搜索资源列表
runge-kutta
- 龙格-库塔法是数值计算的重要方法 本例子简明扼要,浅显好懂-Runge - Kutta numerical method is an important method to the example of concise and simple to understand
四阶runge-kutta求微分方程
- 有四阶runge-kutta发求解非线性微分方程,求得结果可画出分插图等等,十一哥通用的好程序。
Runge-Kutta
- Runge-Kutta-Fehlberg method
matlab_Runge-Kutta-Fehlberg
- matlabMATLAB使用龙格-库塔-芬尔格(Runge-Kutta-Fehlberg)方法来解ODE问题。-matlabMATLAB the use of Runge- Kutta- Fehlerg (Runge-Kutta-Fehlberg) approach to the solution of ODE problems.
4th-runge-kutta
- 使用定步长四阶龙格-库塔法解方程组,并给出一个含贝塞尔函数方程组的例子。-The use of fixed step size fourth-order Runge- Kutta method solution of equations, and gives a Bessel function equations with examples.
runge-kutta
- 自适应步长龙格-库塔法,并给出解含有贝塞尔函数的四阶方程组例子。-Adaptive step Changlong Grid- Kutta method, and gives solutions containing the fourth-order Bessel function equations example.
Runge-Kutta
- 两个求解微分方程组 的龙格库塔法程序两个程序可用-Solving the two differential equations Runge-Kutta method can be used two procedures procedures
Runge-Kutta-Verner-method
- 该代码用c++语言实现了Runge-Kutta-Verner-method算法,运行环境为vc6.0-The code using c++ language implementation of the Runge-Kutta-Verner-method algorithm, runtime environment for vc6.0
runge-kutta
- 求解微分方程,四阶runge-kutta法-Solving differential equations, fourth-order runge-kutta method
Runge-Kutta
- 在C++环境下,实现用四阶龙格库塔方法解方程组。-In C++ environment, using fourth-order Runge-Kutta method to solve equations.
6Runge-Kutta
- 龙格库塔法解数值积分,如需修改函数可以直接在函数部分修改-Runge-Kutta method of numerical integration solution, for modified function can be modified directly in the function part
Runge-Kutta
- 在matlab中四阶Runge-Kutta法求解常微分方程-Runge-Kutta
runge-kutta
- 常微分方程的数值解法及仿真 一、 欧拉(Euler)公式 2 二、 龙格-库塔公式 2 1. 二阶龙格-库塔公式 2 2. 四阶龙格-库塔公式 2 三、 一阶常微分方程组的数值解法 2 四、 仿真算例 4 仿真1 应用欧拉法 4 仿真2 应用二阶龙格-库塔法 5 仿真3 应用四阶龙格-库塔法 6 附录 Matlab程序 7 1. 欧拉法程序 7 2. 二阶龙格-库塔法程序 8 3. 四
Runge-Kutta
- 经典Runge-Kutta法,计算积分的源代码,用matlab实现-Classical Runge-Kutta method to calculate the source code of points, using matlab implementation
Runge-Kutta
- 龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。-Runge- Kutta method (Runge-Kutta) is used to simulate the ordinary differential equations of an important class of implicit or explicit iterative method.
Fourth-order-dragon-Kutta
- 文介绍了利用四阶龙格-库塔法解微分方程的姿态解算方法,并以典型圆锥运动作为输入,检验了算法的可靠性。-The article introduced the use fourth-order dragon standard- Kutta law solution differential equation s posture resolving method, and takes the input by the typical coni
Runge-Kutta-Fehlberg
- Runge-Kutta-Fehlberg法 解初值问题常微分程组-Runge-Kutta-Fehlberg method to solve ordinary differential equations initial value problem
Runge-kutta
- Runge-kutta for nonlinear ansysis
gsl-runge-kutta
- 利用GSL的库文件,使用runge-kutta算法求解微分方程,包含控制参数的传递。(The method to solve the synamic system via differiatial euqationsbased on the GSL library, including the example how to transfer the control variable in the algorithm.)
Runge-kutta 解决二阶实际问题程序
- C语言编程四阶龙格库塔法解二阶常微分方程(C Language Programming Fourth Order Runge-Kutta Method for Solving Second Order Ordinary Differential Equations)