搜索资源列表
K-Means动态聚类算法源程序
- This directory contains code implementing the K-means algorithm. Source codemay be found in KMEANS.CPP. Sample data isfound in KM2.DAT. The KMEANSprogram accepts input consisting of vectors and calculates the givennumber
KMEANS
- 经典统计方法:k-means聚类分析源程序-classical statistical methods : k-means clustering source
KMeans3-based-opencv
- 基于OpenCV的K-均值算法,用于聚类分析,如图象的颜色聚类,生成相关的颜色表等.-the K-means algorithm for clustering analysis, such as image color clustering, Formation of color, and so on.
KMEANS
- 聚类分析中一个简单的聚类算法:K均值算法。-Cluster analysis of a simple clustering algorithm: K-means algorithm.
KMEANS
- K均值法聚类分析 通过K均值法实现数据的聚类分析-K-means cluster analysis through the K-means cluster analysis of data
Kmeans
- K-means算法,聚类分析中的一个重要的算法,用于分类-K-means algorithm, cluster analysis is an important algorithm for classification
KMEANS
- 聚类分析:K-Means动态聚类算法的源程序-Cluster analysis: K-Means clustering algorithm dynamic source
fcm
- 一个关于FUZZY kmeans算法的matlab源程序 有带聚类分析结果-Kmeans algorithm on matlab source are the result of cluster analysis with
zfk_example
- 聚类分析里的k均值(kmeans)算法的matlab实现,是老师即将出的书里,我给写的例子,大家看看吧。 -Where k-means cluster analysis (kmeans) algorithm matlab implementation, a teacher is leaving the book, I give examples of writing, we take a look at bar.
k-means-iris
- 针对著名的UCI机器学习数据库中的iris data的kmeans聚类分析程序,具有代表性-For the well-known UCI machine learning repository of the iris data of kmeans cluster analysis procedure, a representative
KMEANS
- 基于MATLAB的kmeans聚类分析,包含数据和源代码,-MATLAB-based kmeans cluster analysis, including data and source code,
kmeans
- 使用K-均值聚类算法在IRIS数据上进行聚类分析.-K-means clustering algorithm using IRIS data in the cluster analysis.
聚类k-means
- 一个非常简单的kmeans算法,主要用于聚类分析,用户仅需要输入聚类数(A very simple kmeans algorithm, mainly for clustering analysis, users only need to enter the number of clusters)
kmeans
- 对数据和图像进行聚类分析,k-means聚类方法多应用于模式识别,人工智能,机器学习等方面(Clustering analysis of data and images, K-means clustering method should be used in pattern recognition, artificial intelligence, machine learning and so on)
kmeans
- 用于分类 聚类分析 实现故障诊断分类 信号识别(Classified clustering analysis)
代码
- 先用的层次分析法筛选变量,而后使用聚类分析中的kmeans和pam两种方法,优点在于可以快速聚类,针对较大的数据量(clustering methodology)
Untitledk
- k-means聚类分析,用于聚类分析算法,距离聚类(K-means cluster analysis)
KMEANS
- C++编程实现数据挖掘中的聚类分析 使用K均值算法(C++ programming to achieve data mining clustering analysis using k-means algorithm)
kmeans
- 利用k均值聚类算法对数据进行聚类分析(数据点通过随机生成)(Using k-means clustering algorithm to cluster data (data points are generated randomly))
kmeans聚类算法
- kmeans聚类分析,无监督学习实现Matlab代码(Kmeans clustering analysis, unsupervised learning implementation of MATLAB code)