搜索资源列表
tr06_2005
- AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION
[matlab]altificialbeecolonyalgorithm
- 人工蜂群算法的matlab源代码,共有两个版本,原作者版和改进版。 -Artificial Bee Colony (ABC)algorithm matlab source code, there are two versions, the original author version and an improved version. Artificial Bee Colony (ABC) is one of the mo
Artificial-bee-colony
- 人工蜂群算法(简称ABC)是由土耳其埃尔吉耶斯大学的Karaboga在2005年提出的一种基于蜜蜂群智能搜索行为的随机优化算法-Artificially colony algorithm (hereinafter referred to as ABC) is by Turkish elgie yves university in 2005 Karaboga
ABC-algorithm-coded
- Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees.-Artificial Bee Colony (ABC) is one of the most recently defin
Artificial-Bee-Colony
- 人工蜂群算法解决函数优化问题代码,内含Sphere,rastrigin,rosenbrock等标准测试函数- ABC algorithm coded using MATLAB language*/ /* Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated
Bee-colony-alogrithms
- 蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。为了解决多变量函数优化问题,Karaboga提出了人工蜂群算法ABC模型(artificial bee colony algorithm)。 -artificial bee colony algorithm
ABCNNTrain
- Training Artificial Neural Network. XOR Problem. Summation Units, Log-Sigmoid Neurons with Biases. Input Layer: 2, Hidden Layer: 2, Output Layer: 1 neurons. Returns mean square error between desired and act
ABC-Delphi-Codes
- 由Karaboga提出的一种人工智能算法(Delphi版),通过模拟蜜蜂寻找食物的行为的优化方法。它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。-The proposed by Karaboga, an artificial intelligence algorithm (Delphi Edition), by simulatin
ABC
- Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees. It is as simple as Particle Swarm Optimization (PSO) and Differe
Artificial-Bee-Colony
- Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees.
AN-IDEA-BASED-ON-HONEY-BEE-SWARM-FOR-NUMERICAL-OP
- AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION, Dervis karaboga
61046606ABCNNTrain
- Training Artificial Neural Network. XOR Problem. Summation Units, Log-Sigmoid Neurons with Biases. Input Layer: 2, Hidden Layer: 2, Output Layer: 1 neurons. Returns mean square error between desired and actual outputs. R
61046606ABCNNTrain
- Training Artificial Neural Network. XOR Problem. Summation Units, Log-Sigmoid Neurons with Biases. Input Layer: 2, Hidden Layer: 2, Output Layer: 1 neurons. Returns mean square error between desired and actual outputs. R
ARTIFICIAL-BEE-COLONY-ALGORITHM
- 人工蜂群算法:通过模拟蜂群活动。 于2005年由Dervis Karaboga开发-ARTIFICIAL BEE COLONY ALGORITHM Artificial Bee Colony Algorithm was developed by Dervis Karaboga in 2005
Artificial-Bee-Colony
- In computer science and operations research, the artificial bee colony algorithm (ABC) is an optimization algorithm based on the intelligent foraging behaviour of honey bee swarm, proposed by Karaboga in 2005.[1]
runABC
- erciyes university abc agoirthm by dervis karaboga
ABCalgoritmo
- ABC Algorithm in c, Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees.
人工蜂群算法
- 人工蜂群算法(Artificial Bee Colony, ABC)是由Karaboga于2005年提出的一种新颖的基于群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为,蜜蜂根据各自的分工进行不同的活动,并实现蜂群信息的共享和交流,从而找到问题的最优解。人工蜂群算法属于群智能算法的一种。(Artificial bee colony algorithm is a novel optimization algorithm based o
19-ABC
- 人工蜂群算法是Karaboga于2005年提出的一种新颖的群集智能优化算法。算法主要模拟智能采蜜行为,蜜蜂根据各自的分工进行不同的采蜜活动(Artificial bee colony algorithm () is a novel swarm intelligence optimization algorithm proposed by Karaboga in 2005. The algorithm mainly simulates t
Algoritmo Col?nia de Abelhas2
- Optimization algorithm proposed by Karaboga in 2005; Works with population; The candidate solutions represent the positions of the food sources; There is only one artificial bee employed for each food source; Recruit