搜索资源列表
FLDA
- 使用Fisher线性鉴别分析(FLDA)方法在ORL人脸数据库上进行人脸识别试验。ORL标准人脸库共包含40人,每人10幅共400幅BMP图像。-The use of Fisher linear discriminant analysis (FLDA) at Ways on ORL face database for face recognition test. Standard ORL face database contains a
flda
- Fisher Linear Discrimination Analysis源码,程序带selfdemo演示-flda code
Flda
- 函数数据工具箱,包括FPCA,回归,微分方程拟合-Function of data toolbox, including the FPCA, regression,differential equations fitting
AComparativeStudyonFaceRecognitionUsingLDA-BasedAl
- 线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。但是将LDA直接用于人脸识别 会遇到维数问题和“小样本”问题。人们经过研究,通过多种途径解决了这两个问题并实现了基于I,DA的人脸识 别 文章对几种基于LDA的人脸识别方法做了理论上的比较和实验数据的支持,这些方法包括Eigenfaces、Fish— erfaceS、DLDA、VDLDA及VDFLDA。实验结果表明VDFLDA是其中最好的一种方法。-Low—d
LDA_zq
- 用于特征降维,特征融合,相关分析等多元数据分析的fisher鉴别分析(FLDA)Matlab代码实现。-For feature reduction, feature fusion, correlation analysis, multivariate data analysis of the fisher discriminant analysis (FLDA) Matlab code implementation.
FLDA
- 这个呢是用来做人脸识别的,非常简练,而且注释清晰。-FACE RECONGNITION
FLDA
- Fisher线性鉴别分析方法(FLDA)-Fisher linear discriminant analysis (FLDA)
flda
- fisher线性鉴别分析的人脸识别,在ORL库上实验,可在其他库上运行-fisher linear discriminant analysis for face recognition, in the ORL database on the test can be run on other database
1
- 利用FLDA结合多核磁参数来检测前列腺癌-Detection of Prostate Cancer using Multi-parametric Magnetic Resonance
FLDA
- 基于Fisher线性判别分析的人脸识别代码。内涵ORL人脸库。-Code for face recognition based Fisher LDA,and a face data called ORL is included.
flda
- Fisher Linear Discrimination Analysis源码,程序带selfdemo演示-flda code
PDV-algorithm
- 用于分类的主判别变量算法(principal discriminant variate algorithm) - principal discriminant variate algorithm for two classes, x1 and x2. x1 is the training samples in the 1st class with each column being the spectrum characte
Group2_Assignment4_Report.pdf
- code for FLDA, parzon window with report
5679753117KDDA
- 使用flda进行图像识别与分类,非常简练,而且注释清晰-Use flda image recognition and classification, very concise and clear comments
flda-demarshal
- 关于速算24的小程序,工程都在压缩包里面,()
cntData_CSP_FLDA
- 本算法针对运动想象的脑电数据,进行预处理并后续用分类器做分类。 该实验所用的的脑电特征提取方法主要是csp空间滤波,并后续用FLDA来进行特征分类。最终得到较好的效果(In this algorithm, the EEG data of motion imagination are preprocessed and then classified by classifier. The main feature extraction