搜索资源列表
reacTIVision-1.3-src
- 计算机图象处理 reacTIVision is an open source, cross-platform fr a mework for the fast and robust tracking of fiducial markers. It allows the rapid development of table-based tangible user interfaces. This fr a me
Bernsen
- 实现一种局部二值化功能,并能进行参数修改。-To achieve a partial binary function, and parameters can be modified.
Bernsen
- Bernsen區域演算法,能进行参数修改-Bernsen regional algorithm parameters can be modified
Spoken-Dialogue-Systems-Evaluation
- Spoken Dialogue Systems Evaluation, Niels Ole Bernsen, Laila Dybkjæ r and Wolfgang Minker
NewShowGraphic
- 可静态显示min图片文件和动态边采图边显示图片,同时运用固定阈值法、最大类间方差法、bernsen法、niblack法、自适应阈值法等方法进行二值化-Picture files can be static and dynamic display min side edge map display pictures taken while using fixed threshold method, Otsu method, bernsen
text-segmentation
- 不均匀光照下的文字分割,综合运用同态滤波方法、Bernsen局部阈值法、边缘识别法。-Uneven illumination of the text segmentation, integrated use of homomorphic filtering methods, Bernsen local threshold, the edge identification method.
Bernsen1
- bernsen算法实现图像的二值化出理,是一种局部二值化算法-bernsen algorithm for image binarization of science, is a local binarization algorithm
Bernsen
- C语言源代码 数字图像处理 入门基础 附带分析-C language source code for digital image processing entry basis with analysis
matlab-code
- 灰度图像二值化方法matlab代码 :1OTSU算法代码、Bernsen算法代码-Gray image binarization method matlab code: 1 OTSU algorithm code, Bernsen algorithm code
improved-Bernsen
- 改进型Bernsen二值化算法,基于opencv C++的实现,能够对阴影处理有较好的祛除效果-Improved Bernsen algorithm, based in openCV and C++.
Bernsen
- Bernsen算法是一种典型的局部阈值算法-Bernsen algorithm is a kind of typical local threshold algorithm
Combined-with-Canny
- 对经典的二值化方法Ostu 算法和Bernsen 算法中存在的缺点进行了分析, 提出一种结合Canny 算子的图像 二值化方法.该方法综合考虑了边缘信息和灰度信息, 通过边缘附近种子点在高阈值二值化图像中的填充和低阈值 图像对它的修补而得到二值化结果图像, 较好地解决了经典二值化方法中存在的抗噪能力差、边缘粗糙、伪影现象 等缺点.实验结果证明, 该方法能够较好地解决低对比度图像和目标像素灰度不均匀图像的二值化问题-The
bernsen
- The method uses a user-provided contrast threshold. If the local contrast (max-min) is above or equal to the contrast threshold, the threshold is set at the local midgrey value (the mean of the minimum and maximum grey v