搜索资源列表
RGKT14
- c语言,双精度的龙格-库塔解常微分方程,初始条件给出,可以用来解方程组-c language, double-precision Runge - Kutta solution ordinary differential equations, given initial conditions, the solution can be used to equations
龙格库塔法解常微分方程
- 解常微分方程的龙格库塔法C源程序
vbC12
- 用VB实现解常微分方程组 包括定步长四阶龙格-库塔法、自适应变步长的龙格-库塔法、改进的中点法、外推法等-VB solution of ordinary differential equations including fixed step 4-order Runge- Kutta method, adaptive variable step of the Runge- Kutta method to improve the mid
flyMachine
- 飞机运动轨迹模拟 使用龙格-库塔算法计算常微分方程数值解 并用图形显示运动轨迹 作者自己作业的源程序 欢迎讨论-aircraft trajectories simulated using the Runge- Kutta method to calculate the numerical solution of differential equations with graphics and movement track
RGKT14
- c语言,双精度的龙格-库塔解常微分方程,初始条件给出,可以用来解方程组-c language, double-precision Runge- Kutta solution ordinary differential equations, given initial conditions, the solution can be used to equations
odeRK4
- 4阶龙格库塔方法求常微分方程的数值算法的函数子程序。-four bands Runge- Kutta method for ordinary differential equations, numerical algorithm of the function subroutine.
4jie_longgekuta
- 运用四阶龙格-库塔法解一阶常微分方程(定步长)-four bands using the Runge- Kutta method of first-order differential equation (fixed step)
Rungkuta4
- 4阶龙格--库塔法解常微分方程,比较好用,希望大家尝试.-4-order Runge-Kutta method solution of ordinary differential equations, more useful, I hope everyone try.
fit
- 用差分方程或数值微分解决简单的实际问题。 实验3 插值与数值积分 l 插值问题提法和求解思路 l Lagrange插值的原理和优缺点 l 分段线性和三次样条插值的原理和优缺点 l 用MATLAB实现分段线性和三次样条插值 l 梯形、辛普森积分公式的原理及MATLAB实现 l 数值积分公式的误差——收敛阶的概念 l 高斯积分公式
marunge4gh
- 1 用途:4阶经典龙格库塔格式解常微分方程y =f(x, y), y(x0)=y0 格式:[x, y]=marunge4(dyfun,xspan,y0,h) dyfun为函数f(x,y), xspan为求解区间[x0, xn], y0为初值, h为步长, x返回节点, y返回数值解 2 用途:用LU分解法解方程组Ax=b -1 Uses: 4-order classical Runge-Kutta solu
MyRK4sys
- 四阶龙格库塔法解常微分方程组 四阶龙格库塔法解常微分方程组-4-Runge-Kutta
marungemaspline
- 4阶经典龙格库塔格式解常微分方程y =f(x, y), y(x0)=y0 marunge4 用途:三阶样条插值(一阶导数边界条件)maspline-w
sijielonggekutafajieyijiechangweifenfangcheng
- 本程序是用Visual Biasic 实现用四阶龙格-库塔方法对一阶常微分方程(其通式为dy/dx=m-qx(m,q为常数))求解,并用点表示出各函数值在坐标轴上的位置。 龙格-库塔(Runge-Kutta)方法是一种高精度的单步法,比欧拉格式更精确,它采用了间接使用泰勒级数的技术。他既保留了泰勒公式的精度高的特点又避免过多的计算导数值。他是有泰勒公式推倒出的,因此它要求所求的解应具有较好的光滑性。 坐标表示其位置,这样可以直观
lq
- 所编子程序为标准四阶龙格库塔解常微分方程的程序,可以不作修改直接使用。再则,主程序当中用一个方程验证其正确性,并可以输出函数的一阶导。-Subroutine, compiled by a standard fourth order Runge-Kutta ordinary differential equation solution procedure can be used directly without modification.
suanfa
- 数值解与理论解对比可知,四阶龙格-库塔法的精度已经很高,用它来解一般常微分方程已经足够了。-Numerical comparison shows that the theoretical solutions, Runge- Kutta method has high accuracy, and use it to solve ordinary differential equations general enough.
Rungerkutta4
- 该程序利用4阶龙格库塔方法解二阶常微分方程,该微分方程描述火箭发射时质心运动轨迹。-The program uses the 4th order Runge-Kutta method of second order ordinary differential equations, differential equations describe the mass center when the rocket trajectory.
龙格库塔四阶
- MATLAB实现龙格库塔四阶法解常微分方程
四阶龙格库塔法程序——_FORTRAN语言编写
- 关于Runge-Kutta方法,该方法是用来解形如y'=f(t,y)的常微分方程的经典的4阶R-K方法,用fortran语言编写(With respect to the Runge-Kutta method, the method is used to solve the classical 4 order R-K method of ordinary differential equations such as y'=f (T, y)
MATLAB
- MATLAB解常微分方程组,常见的比如传染病模型(SIR,SIRS,SEIR等)(MATLAB solution to ordinary differential equations.Common models of infectious diseases (SIR, SIRS, SEIR, etc.))
自适应变步长的龙格库塔法
- 常微分方程的数值解,可用于求解常微分方程,自适应步长的龙格法(Numerical solutions of ordinary differential equations)