搜索资源列表
龙格库塔求解微分方程数值解
- 工程中很多的地方用到龙格库塔求解微分方程的数值解, 龙格库塔是很重要的一种方法,尤其是四阶的,精确度相当的高。
龙格--库塔法
- 龙格-库塔法是工程中常用的求解微分方程的一种方法.而且具有四阶精度,因此应用很广泛.改程序给出了其源代码.-Runge- Kutta method is commonly used in engineering solving a differential equation methods. But with four bands precision, it is widely used. Changed its procedures
用四阶龙格-库塔法解求解微分方程初值问题
- 典型的数值分析程序,用四阶龙格-库塔法求解微分方程初值问题-typical numerical analysis procedures, with four bands Runge- Kutta method to solve initial value problems
vbC12
- 用VB实现解常微分方程组 包括定步长四阶龙格-库塔法、自适应变步长的龙格-库塔法、改进的中点法、外推法等-VB solution of ordinary differential equations including fixed step 4-order Runge- Kutta method, adaptive variable step of the Runge- Kutta method to improve the mid
53432641
- 工程中很多的地方用到龙格库塔求解微分方程的数值解,龙格库塔是很重要的一种方法,尤其是四阶的,精确度相当的高。此代码只是演示求一个微分方程,要求解其它的微分方程,可以自己定义借口函数,退换程序里面的函数:float f(float , float)即可;-project many places used for Runge- Kutta numerical solution of differential equations. Runge
Soft20060210160010604
- 工程中很多的地方用到龙格库塔求解微分方程的数值解,龙格库塔是很重要的一种方法,尤其是四阶的,精确度相当的高。 -project many places used for Runge- Kutta numerical solution of differential equations. Runge- Kutta is a very important one, especially in four bands, precision is
odeRK4
- 4阶龙格库塔方法求常微分方程的数值算法的函数子程序。-four bands Runge- Kutta method for ordinary differential equations, numerical algorithm of the function subroutine.
stance_dff
- 采用四阶龙格库塔方法进行微分方程解算,用matlab编写的源代码,主要用于四元素微分方程的实时解算-Using fourth-order Runge-Kutta methods for differential equation solvers, prepared to use matlab source code, mainly for the four elements of real-time differential equat
naviga090205
- 前人用四阶龙格库塔方法进行微分方程解算,用matlab编写的源代码,主要用于四元素微分方程的实时解算,上传-Using fourth-order Runge-Kutta methods for differential equation solvers, prepared to use matlab source code, mainly for the four elements of real-time differential e
four-stepRunge-Kuttastatutoryfour-stepRunge-Kuttam
- 解微分方程(组)的定步长四阶龙格库塔法算法源代码-Solution of differential equations (Group) of fixed step size fourth-order Runge-Kutta method algorithm source code
Fourth-orderRungeKutta-rule
- 四阶龙格-库塔法则求解微分方程,四阶龙格-库塔法则求解微分方程-Fourth-order Runge- Kutta rule for solving differential equations, fourth-order Runge- Kutta rule for solving differential equations
MyRK4sys
- 四阶龙格库塔法解常微分方程组 四阶龙格库塔法解常微分方程组-4-Runge-Kutta
sijielonggekutafajieyijiechangweifenfangcheng
- 本程序是用Visual Biasic 实现用四阶龙格-库塔方法对一阶常微分方程(其通式为dy/dx=m-qx(m,q为常数))求解,并用点表示出各函数值在坐标轴上的位置。 龙格-库塔(Runge-Kutta)方法是一种高精度的单步法,比欧拉格式更精确,它采用了间接使用泰勒级数的技术。他既保留了泰勒公式的精度高的特点又避免过多的计算导数值。他是有泰勒公式推倒出的,因此它要求所求的解应具有较好的光滑性。 坐标表示其位置,这样可以直观
龙格库塔四阶
- MATLAB实现龙格库塔四阶法解常微分方程
四阶龙格库塔法程序——_FORTRAN语言编写
- 关于Runge-Kutta方法,该方法是用来解形如y'=f(t,y)的常微分方程的经典的4阶R-K方法,用fortran语言编写(With respect to the Runge-Kutta method, the method is used to solve the classical 4 order R-K method of ordinary differential equations such as y'=f (T, y)
zd530003514 (2)
- 一个matalb的四阶龙格库塔法解二阶微分方程的案列,附带一个FFT变换程序,供初学者参考(A MATALB four order Runge Kutta method for solving the two order differential equations for reference for beginners)
bin
- 学习,是指通过阅读、听讲、思考、研究、实践等途径获得知识或技能的过程,学习用于计算龙格库塔四阶方程。(Four order equations of Runge Kutta)
洛伦兹-龙格库塔
- 用四阶龙格库塔计算洛伦兹方程,人后运用Grapher绘制出洛伦兹方程的相图(Using the four order Runge Kutta to calculate Lorenz equation)
龙格库塔法的编程
- 龙格库塔求解微分方程数值解,工程中很多的地方用到龙格库塔求解微分方程的数值解, 龙格库塔是很重要的一种方法,尤其是四阶的,精确度相当的高(Runge Kutta is used to solve the numerical solution of differential equation in many places in the project, Rungekutta is a very important method, es
四阶龙格-库塔法
- 利用四阶龙格库塔求解微分方程,并给出方程实例。(The fourth order Runge Kutta is used to solve the differential equation and an example is given.)