搜索资源列表
matlab作业
- 模式识别一份很好的作业,包括线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,支持向量机-a very good operation, including linear classification; Minimum risk Bayesian classifier; Supervised learning method Hierarchical clustering analysis; K-L tran
BayesianNetworksTools
- 贝叶斯网络的一个很好用的工具箱,基于matlab7.0版本。有stanford大学的一个博士生编写;属于源代码开放性质。-Bayesian network of a good toolbox, for matlab7.0 version. Stanford university has a doctoral preparation; Belong to the open nature of the source code.
bayes
- bayes数据挖掘;基于贝叶斯定理的分类方法
matlab作业
- 模式识别一份很好的作业,包括线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,支持向量机-a very good operation, including linear classification; Minimum risk Bayesian classifier; Supervised learning method Hierarchical clustering analysis; K-L tran
BayesianNetworksTools
- 贝叶斯网络的一个很好用的工具箱,基于matlab7.0版本。有stanford大学的一个博士生编写;属于源代码开放性质。-Bayesian network of a good toolbox, for matlab7.0 version. Stanford university has a doctoral preparation; Belong to the open nature of the source code.
bayes
- bayes数据挖掘;基于贝叶斯定理的分类方法-Bayes data mining based on Bayesian classification method
ClassficationBaseOnAssociation
- 贝叶斯分类器的改进 在windows 平台下实现;-Improvement of Bayes classfication It is implement in windows.
work_for_pattern_recognition
- 通过设计线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,设计支持向量机对给定样本进行有效分类并分析结果。-By designing a linear classifier minimum risk Bayes classifier supervised learning method hierarchical cluster analysis K-L transform to extract ef
beiyesi
- 1 通过实验,掌握多元正态分布的最大似然估计; 2 掌握多元正态分布下的最小错误率的贝叶斯分类; 3 对其他的参数估计有更深的认识。 -1 experiment, master multivariate normal distribution maximum likelihood estimation 2 multivariate normal distribution under the minimum control
最小错误率贝叶斯决策
- 基于最小错误率的贝叶斯决策 (1)要决策分类的类别数是一定的;(2)每一类出现的“先验概率”已知;(3)每一类的“类条件概率密度”已知;(Bayesian Decision Based on Minimum Error Rate(1) the "prior probabilities" of each class are known; (2) the "conditional probability den
matlab 贝叶斯和通用阈值软阈值图像去噪方法
- matlab 贝叶斯和通用阈值软阈值图像去噪方法MATLAB程序,希望对大家有帮助,仅供大家参考,希望有用(Matlab Bias and general threshold soft threshold image denoising method MATLAB program, we want to help, for your reference, I hope useful)
BPFA_Denoising
- 利用非参数贝叶斯字典学习模型进行图像稀疏表示(use non-parametric-bayesian-dictionary-learning-for-sparse-image-representations)
work
- 1) 以身高为例,画出男女生身高的直方图并做对比; 2) 采用最大似然估计方法,求男女生身高以及体重分布的参数; 3) 采用贝叶斯估计方法,求男女生身高以及体重分布的参数(假定方差已知,作业请注明自己选定的一些参数情况); 4) 采用最小错误率贝叶斯决策,画出类别判定的决策面。并判断某样本的身高体重分别为(160,45)时应该属于男生还是女生?为(178,70)时呢?(1) taking height as an example, dr
SpatialModels
- 区域健康和死亡率变化的贝叶斯模型;彼得·康登,统计和地理中心,QMUL(Bayesian models for area health and mortality variations; an overviewPeter Congdon, Centre for Statistics and Dept of Geography, QMUL)
bayes_C++
- 贝叶斯分类器-联合变量_C++,只需更改样本文件名即可测试。(The Bias classifier - the joint variable _C++, can be tested only by changing the name of the sample file.)
bayes_independent variable _C++
- 贝叶斯分类器-独立变量_C++,只需更改样本文件名即可测试。(Bias classifier - independent variable _C++, can be tested only by changing the name of the sample file.)
bayes_independent variable _matlab
- 贝叶斯分类器-独立变量_matlab,只需更改样本文件名即可测试。(Bias classifier - independent variable _matlab, can be tested only by changing the name of the sample file.)
bayes_joint variable _matlab
- 贝叶斯分类器-联合变量_C++,只需更改样本文件名即可测试。(The Bias classifier - the joint variable _C++, can be tested only by changing the name of the sample file.)
bayes_analyse
- 基于代价敏感的朴素贝叶斯二分类对于不均衡数据的处理(Cost sensitive naive Bayes two classification for unbalanced data processing)
贝叶斯判决
- 假定某个局部区域细胞识别中正常w1和非正常w2 两类先验概率分别为: 正常状态:P(w1)=0.9 ; 异常状态:P(w2)=0.1 。 现有一系列待观察的细胞,其观察值为: -2.67 -3.55 -1.24 -0.98 -0.79 -2.85 -2.76 -3.73 -3.54 -2.27 -3.45 -3.08 -1.58 -1.49 -0.74 -0.42 -1.12 4.25 -3.99 2.88 -0.98