搜索资源列表
HOG
- 基于梯度方向直方图( H OG) 特征的行人检测是目前检测精度较高的主流方法。针对基于梯度直方图特征的 行人检测存在检测精度还有待提高、向量维数大的问题, 提出使用梯度直方图统计特征加颜色频率和肤色特征描述行 人, 选取一些分类能力较强的block 作为最后的特征, 使用线性SVM 分类。在INRIA 库上的实验证明, 该方法能有效地 提高检测精度。-H istog r am o f or iented g radient(
Pedestr-ian-Detection
- 基于多特征的AdaBoost行人检测算法, 提出一种融合灰 度和轮廓信息的新的多特征综合表示方法. 该方法通过统计样本的权重直方图建立分类模 型, 并用多个直方图的乘积表示样本在多特征下对应的联合概率分布-AdaBoost pedestrian detection algorithm based on multi-feature, presents a fusion of grayscale and contour inform
CountsPeopleWalking
- 很好的视频序列中行人检测及行人统计的方法。-Pedestrian detection and pedestrian count
Q
- 本文以室内、外不同空间的人数统计为背景,研究基于图像的人员计数技术,对某时段内进出摄像机视野中指定区域的人数,或指定区域内在景人数进行统计。主要研究内容有以下几点: (1)人员计数方案论证:本文分析对比了不同人员计数算法,研究分析了基于像素、 基于Hough变换的人员计数算法的优缺点。 (2)基于像素统计的人员计数系统实现:①分别采用近似中值背景模型和高斯混合背景模型提取前景图像;②采用基于HSV颜色空间变换的方法对前景中的
hog-feature
- 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本
行人检测统计
- 该行人统计方法柔性较好,针对不同的应用场景参数调整较少。实时性好,在普通PC上能够实现30FPS的检测速度。统计准确率较高,当行人密度低时能达到90%以上的准确率,当行人密度高时能达到70%以上的准确率。初步达到了实际应用需求。(The pedestrian statistical method is flexible and less adjustable for different application scenarios. It
counting-pedestrians-open-cv-master
- 对监控视频中的行人进行检测并统计行人数量(Counting Heads in Video)
MATLAB教室人数统计系统
- 该课题为基于MATLAB的教室人数统计,带有丰富的人机交互GUI界面。实现教室人数的计数统计,进而统计出勤率,上课认真听讲的比例。原先预设总人数,未出勤或者书本遮住脸部、趴着玩手机等必然无法采集到人脸,从而对应数量缺失,得出出勤率或听讲率。该课题采用肤色原理进行人脸定位和人脸分割。本课题中,为了界面GUI的美观,刻意将分割出的人脸单独显示在GUI对应的axes里。是个不错的设计选题。(This topic is based on MAT