搜索资源列表
SAPSO
- 权重改进粒子群算法中的自适应权重法,平衡了PSO算法的全局探索能力和局部改良能力-Weight improved particle swarm algorithm in the adaptive weighting method to balance the global exploration of the PSO algorithm is improved capacity and capacity of local
SAPSO
- 自适应的粒子群基本算法 里面没有适应度函数 可以自己编写好 然后进行调用.权重改进粒子群算法中的自适应权重法,平衡了PSO算法的全局探索能力和局部改良能力.-This is the basic matlab program of SAPSO
pso-eld
- 基于模糊自适应pso的电力系统负荷调度算法,采用的测试案例是标准1ee6g系统,约束条件包括机组出力上限限制、网络损耗和功率平衡。-Based on fuzzy adaptive pso scheduling algorithm of power system load, the test case is a standard 1 ee6g system, constraint conditions including limit th
sapso
- 为了平衡粒子群算法的全局搜索能力和改良局部能力,采用非线性的动态惯性权重即自适应权重法。给出一个用自适应权重的粒子群算法求多元复杂函数的最小值实例。-To balance the PSO global search capability and improved local capacity, the use of non-linear dynamic adaptive inertia weight that the weighting
自平衡PSO改
- 自平衡PSO,自己编写的程序,之前毕设的成果,通过PSO实现路径规划,并应用到实例当中(Self balancing PSO, the program written by oneself, the result of the completion before, realizes the path planning through PSO, and applies it to the example.)