搜索资源列表
fish
- Fisher线性判别是线性分类算法中最基本的一种算法,其基本思想是将d维空间中的样本投影到一条最易于分类的投影线上,再进行分类。本文将用使用matlab实现Fisher线性判别算法,并给出4种阈值选择的方法。
LDA
- 线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。但是将LDA直接用于人耳识别会遇到维数问题和“小样本”问题。人们经过研究,通过多种途径解决了这两个问题并实现了基于LDA的人耳识别。文章对几种基于LDA的人耳识别方法做了理论上的比较和实验数据的支持,这些方法包括Fisherears、DLDA、VDLDA及VDFLDA。实验结果表明VDFLDA是其中最好的一种方法
fenlei
- 模式识别,一个很好的数字,图形程序,包括了很多种算法,样本设计,摸板匹配,BYS分类器,线性分类器,非线性分类器,神经网络分类
LDA
- 线性判别分析法(LDA),LDA以提高样本在子空间中的可分类为目标。寻找一组基向量,在这些基向量张成的子空间中,不同类别的训练样本能有最小的类内离散度,最大的类间离散度。
libsvm-2.85-dense
- LIBSVM源码。LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、 易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC、 n - SVC )、回归问题(包括e - SVR、n - SVR )以及分布估计(one-class-SVM ) 等问题,提供了线性、多项式、径向基和S形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、
fengleiqi2
- 使用线性分类器进行分类,采用感知器算法中的“奖惩算法”,各提取3类中的前25个样本共75个作为学习样本。
libsvm-2.89
- LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、 易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC、 n - SVC )、回归问题(包括e - SVR、n - SVR )以及分布估计(one-class-SVM ) 等问题,提供了线性、多项式、径向基和S形函数四种常用的核函数供选择,可 以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概 率估
fish
- Fisher线性判别是线性分类算法中最基本的一种算法,其基本思想是将d维空间中的样本投影到一条最易于分类的投影线上,再进行分类。本文将用使用matlab实现Fisher线性判别算法,并给出4种阈值选择的方法。-Fisher Linear Discriminant is a linear classification algorithm as a basic algorithm, its basic idea is to d-dimens
fenlei
- 模式识别,一个很好的数字,图形程序,包括了很多种算法,样本设计,摸板匹配,BYS分类器,线性分类器,非线性分类器,神经网络分类-Pattern recognition, a very good figures, graphics program, including a very wide range of algorithms, sampling design,摸板match, BYS classifier, linear class
LDA
- 线性判别分析法(LDA),LDA以提高样本在子空间中的可分类为目标。寻找一组基向量,在这些基向量张成的子空间中,不同类别的训练样本能有最小的类内离散度,最大的类间离散度。-Linear discriminant analysis (LDA), LDA in order to improve the sample in the sub-space can be classified as a target. Find a group-ba
nn
- 线性神经网络,BP神经网络,Hopfield神经网格,Elman神经网络,RBF神经网络;在模型应用模块中实现了六种实际应用:RBF网络的船用柴油机故障诊断,BP网络的齿轮箱故障诊断,SOM网络的回热系统故障诊断,BP网络的设备状态分类器,SOM网络的人口比例样本分类,SOM网络的土壤性状样本分类。-Linear neural network, BP neural network, Hopfield neural network, El
Classification
- 模式分类。包括:训练样本设计、模板匹配分类器、Bayes分类器、线性函数分类法、非线性分类法、神经网络分类法-Pattern classification. Include: training sample design, template matching classifier, Bayes classifier, a linear function of classification, non-linear classificati
work_for_pattern_recognition
- 通过设计线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,设计支持向量机对给定样本进行有效分类并分析结果。-By designing a linear classifier minimum risk Bayes classifier supervised learning method hierarchical cluster analysis K-L transform to extract ef
programeoffuzzylustering
- 在对样本进行分析时,一般可对样本进行模糊聚类,然后再找出交遇区,利用交遇区的新样本进行分类,可建立线性分段分类器-fuzzy clustering
linearclassifier
- 本文设计一个线性的分类器,可以对样本进行正确的分类-This design a linear classifier, can be correctly classified samples
svm
- svm分类器,有几类样本点,利用线性SVM分类器求出其分界面-svm classifier, there are several types of sample points, using a linear SVM classifier obtained the sub-interface
贝叶斯决策实现线性样本分类
- MATLAB语言编程,用贝叶斯决策算法实现线性样本分类,输入待分类样本,输出样本分类决策面。(MATLAB programming language, using Bayesian decision algorithm to achieve linear sample classification, input samples to be classified, output samples, classification, decis
work
- 1) 以身高为例,画出男女生身高的直方图并做对比; 2) 采用最大似然估计方法,求男女生身高以及体重分布的参数; 3) 采用贝叶斯估计方法,求男女生身高以及体重分布的参数(假定方差已知,作业请注明自己选定的一些参数情况); 4) 采用最小错误率贝叶斯决策,画出类别判定的决策面。并判断某样本的身高体重分别为(160,45)时应该属于男生还是女生?为(178,70)时呢?(1) taking height as an example, dr
线性分类器
- 该程序能够实现对于一个样本完成感知机,最小二乘法,凸优化方法解决SVM和matlab自带函数解决SVM的四种程序,并且通过修改部分参数可以完成不同效果。(The program can be achieved for a complete sample perceptron, least squares method, convex optimization method to solve SVM and MATLAB with fou
ganzhiqi
- 用感知器算法分类一个随机生成的2维数据样本集,并画出线性判决函数(Using the perceptron to classify a simple randomly generated 2 dimensional data sample set)