搜索资源列表
noseecluster
- 聚类分析技术有着广泛应用.因为在对图像进行聚类分析时,通常缺少可资利用的先验知识,所以需要采用无监督的聚类算法.为了适应图像检索的需要,提出了一种新型的无监督聚类方法,即根据离群点信息来自动确定聚类算法的终止时机.此方法还弥补了现有聚类算法在离群点识别、使用上的缺欠.为验证其可行性,用其改进了CURE和ROCK两个经典算法.实验表明,改进后的两个算法都能自动终止,并能取得优于以往的聚类效果. -clustering analysis t
noseecluster
- 聚类分析技术有着广泛应用.因为在对图像进行聚类分析时,通常缺少可资利用的先验知识,所以需要采用无监督的聚类算法.为了适应图像检索的需要,提出了一种新型的无监督聚类方法,即根据离群点信息来自动确定聚类算法的终止时机.此方法还弥补了现有聚类算法在离群点识别、使用上的缺欠.为验证其可行性,用其改进了CURE和ROCK两个经典算法.实验表明,改进后的两个算法都能自动终止,并能取得优于以往的聚类效果. -clustering analysis t
pr
- 关于模式识别的一些文章,离群点的检查,svm的介绍,最优化设计-A number of articles on pattern recognition, inspection of outliers, svm introduction, the most optimal design
weka-src
- weka源代码 最全最新的 数据挖掘用机器学习实现。包含聚类 分类 关联规则 离群点监测。java平台-weka most up-to-date source of data mining using machine learning to achieve. Clustering association rules classification contains outliers monitoring. java platform
outlier
- 离群点发现的源代码,数据挖掘方向的,很有用,可以在众多点中发现离群点-data mining
DataMining
- 实现数据挖掘中数据平滑的三种算法,另外还可以结合阈值计算离群点-Three data mining, data smoothing algorithm, also can be combined with a threshold value of outliers
outlier-detection-algorithm-in-WSN
- 无线传感器网络离群点检测算法,主要用于识别节点故障,从节点状态数据中识别出不正常的数据,用来判断故障节点。-outlier detection algorithm in WSN
liqundianjiance
- 基于密度的离群点检测, ,基于密度的离群点检测-based on density
AR_with_remove
- 时间序列分析,AR模型,用于流数据预测与滤波 输入参数:y为原始数据矩阵,p为AR模型的阶数,la为自回归模型的遗忘系数 输出参数:预测值,置信区间,离群点等-Time series analysis, AR model for prediction and filtering data stream input parameters: y original data matrix, p is the order of the
2D-linear-fitting
- 2D直线拟合,忽略了离群点,在测量值被高噪声,传感器故障等破坏的实际应用中十分重要-2D linear fitting, ignoring the outliers, are very important in high-noise measurements, sensor failures and other damage in the practical application
Outlier2
- 本工程实现数据挖掘中的离群点检测功能,并且添加数据集。并且对算法进行了改进,使得算法运行更快速-The engineering data mining outlier detection function, and add data set. And the algorithm was improved so that algorithms run faster
LOF
- 局部离群点检测算法,matlab代码实现-local outlier detection
Outlier-Monitoring
- 不确定数据流的连续离群点探测,离群点挖掘方向的论文-Continuous Outlier Monitoring on Uncertain Data Streams
liqun-
- 去除离群点,PCL点云滤波,结合VS2010平台-Removing outliers, PCL point cloud filtering, combined with VS2010 platform
maoci
- 是一款基于r语言编写的,计算电力行业电压功率曲线的毛刺率,即通过聚类,计算绝对差相对差并与阈值相比较的方法得出离群点。-Is a language based on r, calculate the voltage of the power curve of the electric power industry burr rate, through clustering, calculate absolute difference a
matlab
- 题目:设计二分类数据集合,满足 1 线性可分 2 线性可分但是有离群点 3 线性不可分 将利用神经网络感知器来进行操作. -Title: design binary classification data collection, meet 1 linear separable Two linear separable but there are outliers Three linear inseparable
基于距离的离群点检测
- 基于距离的离群点算法,能够剔除不良数据。(The distance based outlier algorithm can eliminate bad data.)
outlier
- 利用matlab进行离群点检测,包含KNN,LOF,k-means方法(Using MATLAB to detect outliers, including KNN, LOF and K-means methods.)
FFLOF
- 基于统计的离群度计算,可以筛选任意数量数据的离群点。(Calculated based on the degree of statistical outlier, you can filter any number of outlier data.)
3dLOF
- 三维点云的LOF算法,可以计算各点的LOF值,进而识别离群点。带入用户自己的TXT形式的点云文件即可。(The LOF algorithm of 3D point cloud can calculate the LOF value of each point, and then identify outliers. Bring the user's own TXT form of point cloud file.)