搜索资源列表
fayeboy1984
- 此设计要求能够实现将医学图像进行识别的过程,包括了图像预处理、图像特征提取及分类判决三大模块。在预处理这一步中主要实现的是将彩色图像转换为灰度图像,灰度图像的二值化,直方图修正,去除干扰、噪声以及差异,边缘增强等;第二模块是图像的特征提取。由于对象的物理与几何特性差异,在影像中表现为局部区域的灰度产生明显变化,形成影像特征,而图像特征提取就是对其进行加工、整理、分析、归纳以便提取构成目标影像的特征,得到能反映图像内容区别于其他事物的本质
VC_ImageProcessing
- 《Visual C++数字图像获取、处理及实践应用》杨枝灵、王开等编著。内容:第4章 图像增强(对比度增强、灰度变换法、直方图修整法、图像平滑、图像锐化、伪彩色和假彩色增强);第5章 图像复原(逆滤波复原、维纳滤波方法);第6章 图像处理中的正交变换(傅立叶变换、离散余弦变换(DCT)、沃尔什变换、基于特征向量的变换、霍特林(Hotelling)变换、SVD变换、小波变换、Mallat算法);第7章 图像压缩编码(霍夫曼(Huffman
fayeboy1984
- 此设计要求能够实现将医学图像进行识别的过程,包括了图像预处理、图像特征提取及分类判决三大模块。在预处理这一步中主要实现的是将彩色图像转换为灰度图像,灰度图像的二值化,直方图修正,去除干扰、噪声以及差异,边缘增强等;第二模块是图像的特征提取。由于对象的物理与几何特性差异,在影像中表现为局部区域的灰度产生明显变化,形成影像特征,而图像特征提取就是对其进行加工、整理、分析、归纳以便提取构成目标影像的特征,得到能反映图像内容区别于其他事物的本质
VC_ImageProcessing
- 《Visual C++数字图像获取、处理及实践应用》杨枝灵、王开等编著。内容:第4章 图像增强(对比度增强、灰度变换法、直方图修整法、图像平滑、图像锐化、伪彩色和假彩色增强);第5章 图像复原(逆滤波复原、维纳滤波方法);第6章 图像处理中的正交变换(傅立叶变换、离散余弦变换(DCT)、沃尔什变换、基于特征向量的变换、霍特林(Hotelling)变换、SVD变换、小波变换、Mallat算法);第7章 图像压缩编码(霍夫曼(Huffman
Workpiecefeatureextraction
- 1、有9个工件图像,要求从本章讲授的特征提取方法中,选择3~5种提取工件特征并给出数字结果;链码为必选方法,给出数字结果和图形显示,做到链码和原图像的双向变换显示。(实验报告中应描述相应的特征提取方法并略述实现过程) 2、设计的界面中要具备功能:任选1个工件作为目标,以上述实现的特征提取方法识别该目标的工件类型(即序号),并显示该判别基准特征的数据。 3、有可能的话试用聚类、
ImageRegistration
- 基于边缘特征的图像配准算法源码 基于边缘特征的图像配准算法是将不同时间、不同的传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的同一场景的两幅或多幅图像根据其边缘特征进行匹配、叠加的处理,最终生成一幅全景图像的方法。该方法具有抗噪性强,匹配速度快,误匹配率低,适用于多种类型的图像等优点,主要可以运用于以下领域: (1)军事研究领域,如飞行器辅助导航系绞、武器投射系统的末制导以及寻地等应用研究; (2)医学图
RadarSceneMatchingImage
- :采用基于内容的图像检索方法,对雷达景象匹配数据库中的图像数据进行兴趣目标的查询检索与识别.由于 雷达图像具有受斑点噪音影响明显等特点,故综合运用迭代阈值选取以及区域生长的方法,进行兴趣目标(主要是 机场)的分离;由于匹配数据库中图像数据范围比较大,包含目标多,为了在检索过程中确定检索目标在图像中的 位置,预处理时,采用对同一图像多幅子图进行特征提取的方法,最终在检索时通过子图范围来确定目标在大幅图 像上的位置.由实验分
xinxilun
- 《Visual C++数字图像获取、处理及实践应用》杨枝灵、王开等编著。内容:第4章 图像增强(对比度增强、灰度变换法、直方图修整法、图像平滑、图像锐化、伪彩色和假彩色增强);第5章 图像复原(逆滤波复原、维纳滤波方法);第6章 图像处理中的正交变换(傅立叶变换、离散余弦变换(DCT)、沃尔什变换、基于特征向量的变换、霍特林(Hotelling)变换、SVD变换、小波变换、Mallat算法);第7章 图像压缩编码(霍夫曼(Huffman
Target-Detection
- 通过分析天空背景下红外运动小目标、噪音以及背景的特征,提出一种检测方法。首先利用向量小波变换对运动图像进行预处理;其次采用图像差分进行目标的粗检测,提取出候选目标;最后可根据运动目标和噪音的特征对候选目标进行识别,检测出真实的运动小目标。实验证明,该方法可有效检测天空背景下红外运动小目标。-According to small moving infrared target detection in the sky background,
4
- 本文主要研究海面运动船只的识别与跟踪技术。首先概述了海上运动目标检测和跟踪的研究现状;对目前主要的显著区域提取、运动目标识别和跟踪方法进行了简要概述;提出了基于视觉注意和HOG特征相融合的海上船只目标检测方法;利用多特征融合的粒子滤波算法对运动目标进行了跟踪。-This paper studies the sea sport vessel identification and tracking technology. First, an
HandDetector
- 这是一个人手识别程序,基于OpenCV,环境VisualStudio2013。 首先通过图片采集手势图像,而后进行减小噪声的滤波处理,根据肤色在YCrCb色彩空间中的自适应阈值对图像进行二值化处理,提取图像中所有的肤色以及类肤色像点,而后经过膨胀、腐蚀处理后,祛除小块的类肤色区域干扰,得到若干块面积较大的肤色区域;此时根据各个肤色区域轮廓特征进行甄选,获取目标手势区域,而后根据目标区域的特征进行识别,定位手心。-This is a
Fourier-Mellin-transform(FMT)
- 包含已提取过ROI的MSTAR的图像数据,可以用来作为目标识别的很好数据资源;包含傅里叶梅林变换提取不变特征的MATLAB程序-Containing the extracted image data of ROI MSTAR it can be used as a target to identify good data resources contains Fourier Mellin transform to extract in
matlab
- 使用的版本:64位的MATLAB R2015b,代码可以直接运行仿真。 (1)提取五个特征量中的Hu矩和仿射不变矩; (2)picture用来存放训练样本和测试样本; (3)save用来保存代码运行过程中提取的特征量,matlab1存放仿射不变矩特征量, matlab2存放Hu矩特征量,Hu_BBA存放样本的Hu矩的基本信度赋值和识别类型, FS_BBA存放样本的仿射不变矩的基本信度赋值和识别类型,目标识别矩阵、
基于目标特征的目标识别
- 先对目标进行检测,接着进行目标识别。基于目标的特征对目标进行跟踪。(The target is first tested and then the target is identified. The target is tracked based on the characteristics of the target.)
da
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程) AdaBoost是一种增强性机器学习算法,它用于把弱分类器联合成强分类器;SVM本身就是(Background modeling based on codebook (codebook) background difference method
fa(4)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程)(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaBoost and h
ga (6)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程) AdaBoost是一种增强性机器学习算法(Background modeling based on codebook (codebook) background difference method + cascade based on LBK
rq(3)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程) AdaBoost是一种增强性机器学习算法,它用于把弱分类器联合成强分类分类器(Background modeling based on codebook (codebook) background difference method + cas