搜索资源列表
EM_GM
- 混合高斯分布EM算法,可以算混合高斯分布的三个参数。混合高斯分布更接近系数分布。-mixed Gaussian distribution EM algorithm can calculate mixed Gaussian distribution of the three parameters. Mixed closer to the Gaussian distribution coefficient.
Matlab-Fitting-Functions
- 附件中的m代码包括了一系列的拟合函数,这些函数通常的输入是概率分布的样本。还有最大似然估计仿真器、最小平方仿真器、混合高斯分布估计的EM算法、
FitFunc
- 本算法包括最大似然估计,最小二乘估计,基于EM算法的多种混合高斯分布估计,EM算法测试实例,绘制每种分布的plot函数。非常有参考价值!
KNearestclass
- 使用K近邻算法对一个2维德样本集进行分类,样本集的分布为混合高斯分布。
FittFunc
- 多种概率分布的拟合函数集合 本算法包括最大似然估计,最小二乘估计,基于EM算法的多种混合高斯分布估计,EM算法测试实例,绘制每种分布的plot函数。非常有参考价值!
EM_GM
- 混合高斯分布EM算法,可以算混合高斯分布的三个参数。混合高斯分布更接近系数分布。-mixed Gaussian distribution EM algorithm can calculate mixed Gaussian distribution of the three parameters. Mixed closer to the Gaussian distribution coefficient.
Matlab-Fitting-Functions
- 附件中的m代码包括了一系列的拟合函数,这些函数通常的输入是概率分布的样本。还有最大似然估计仿真器、最小平方仿真器、混合高斯分布估计的EM算法、-M in the annex to the code, including a series of fitting function, which function normally is the probability distribution of input samples. There
FitFunc
- 本算法包括最大似然估计,最小二乘估计,基于EM算法的多种混合高斯分布估计,EM算法测试实例,绘制每种分布的plot函数。非常有参考价值!-This algorithm, including maximum likelihood estimation, least squares estimation, based on the EM algorithm estimate a mixture Gaussian distribution,
KNearestclass
- 使用K近邻算法对一个2维德样本集进行分类,样本集的分布为混合高斯分布。-K nearest neighbor to use a 2 Verde sample set for classification, the distribution of sample set for mixed Gaussian distribution.
code
- 视频运动物体检测,采用混合高斯分布建立背景模型及差分方法对背景模型进行更新-Sports video object detection, adopt a mixed Gaussian distribution model and set up the background difference method to update the background model
Expectation-Maximization
- 混合高斯分布中基于最大期望算法的参数估计模型,适应于通信与信号处理以及统计学领域-Mixed Gaussian distribution algorithm based on the parameters of the greatest expectations of the estimated model, adapted to communications and signal processing, as well as the
random
- 第13章: 随机数生成 PFQZ 用平方取中法产生随机数列 MixMOD 用混合同余法产生随机数列 MulMOD1 用乘同余法1产生随机数列 MulMOD2 用乘同余法2产生随机数列 PrimeMOD 用素数模同余法产生随机数列 PowerDist 产生指数分布的随机数列 LaplaceDist 产生拉普拉斯分布的随机数列 RelayDist 产生瑞利分布的随机数列 CauthyDist 产生柯西分
mixture_of_gaussians
- 这是一个视频图像处理的程序,通过混合高斯分布来建立背景模型,并且提取了运动目标,效果不错!-mixture of gaussians
xiaobo
- .首先,建 立背景的混合高斯分布模型和阴影颜色模型,通过差分法提取前景区域并结合Gabor小 波纹理特征分析找出潜在的阴影点;然后通过阴影颜色模型对这些潜在的阴影点进行颜 色分析;最后通过后续处理,找出真正的阴影区域-. First of all, to establish the background Gaussian mixture distribution model and the shadow color mode
emcenter
- 我写的改进中心点的混合高斯分布的EM算法-I wrote to improve the center of the EM algorithm for Gaussian mixture
demo1
- 我自己写的关于二维混合高斯分布的EM算法-I wrote about the distribution of two-dimensional Gaussian mixture EM algorithm
em-three-preference
- 基于EM算法,可以估计在混合高斯分布下的三个参数-EM expection
EM_GMM
- 用EM算法对混合高斯模型中的参数进行估计 一种改进的EM算法即Monte Carlo EM算法(MCEM)的一个简单例子(The parameters in the mixed Gaussian model are estimated by EM algorithm An improved EM algorithm is a simple example of the Monte Carlo EM algorithm (MCEM))
hunhe
- 采用多个高斯分布的方式来描述背景像素点的特征,在线地更新参数和权重,实现运动检测和前景提取的同步进行,即采用混合高斯背景算法进行建模,以降低动态背景的干扰。(The characteristics of the background pixel are described by several Gaussian distributions, and the parameters and weights are updated onlin
npbayes
- 剑桥大学无参数贝叶斯课程的代码,主要包括狄利克雷过程,主题模型,无限混合高斯分布等(code of nonparametric bayesian cambridge, include dirichlet process, topic model, infinite mixutre gaussian)