搜索资源列表
sorce
- Fortran语言,求解方腔流动的CFD(计算流体动力学)代码-code to solve caivty flow
driven_cavity01
- 方腔顶部拖拽流动,FFT 求解,计算精度很高!-Drag and drop the top cavity flow, FFT solution, high accuracy!
Rayleigh_Benard003
- 方腔内流动,左右侧壁有温度差,固壁条件, SOR算法求解-Cavity flow, a temperature difference between left and right side wall, solid wall condition, SOR algorithm
shear-flow
- 投影法,求解方腔剪切流动:正方形,其宽度为1,里面充满粘性不可压缩流体,它的左右壁面和底面固定不动,上壁面以切向速度1运动.要求寻找在Re=100时的定常解-Projected method used to solve the shear flow of rectangular cavity
fq
- 有限体积法求解方腔流动。有限体积法求解方腔流动有限体积法求解方腔流动-Finite volume method to solve the cavity flow. Finite volume method to solve the cavity flow finite volume method to solve the cavity flow
fangqiang
- !利用有限体积算法三阶迎风型 离散格式和 !人工压缩算法求解方腔流动问题 -! Algorithm using the third-order upwind finite volume discretization scheme and! Artificial cavity flow compression algorithm for solving the problem
QUICK_cavity
- 二维方腔流动问题是一个不可压缩黏性流动中典型流动。虽然目前尚不能求得它的解析解,但是它常被用来作为检验各种数值算法计算精度和可靠性的算例。文献中几乎大多数算法都对它进行过计算。在本算例中采用有限体积算法三阶迎风型 离散格式对它进行数值求解。-The problem is two-dimensional square cavity flow incompressible viscous flow in a typical flow. Al
SIMPLE
- 用SIMPLE方法求解二维不可压缩方腔剪切流动,结果以TecPlot可读文件输出。-By SIMPLE method for solving the two-dimensional incompressible square cavity shear flow, results TecPlot readable output file.
fang-qiang-liu
- 利用有限体积算法三阶迎风型QUICK离散格式和 人工压缩算法求解方腔流动问题 - use third-order upwind finite volume algorithm QUICK discreting scheme and artificial square compression algorithm to solve cavity flow problem
LBM可压缩方腔模拟流
- 利用LBM方法对方腔内的流动进行模拟,求解NS可压缩方腔(The LBM method is used to simulate the flow in the opposite cavity, and the NS compressible cavity is solved.)
SIMPLE算法求解方腔内粘性不可压流动
- 采用离散网格,基于SIMPLE算法的基本思想求解方腔不可压缩驱动流(Using discrete grids and based on the basic idea of SIMPLE algorithm, the incompressible driving flow in square cavity is solved.)
顶盖驱动流
- 顶盖驱动流是不可压缩黏性的典型流动,可以用来检验各种数值算法计算精度和可靠性,目前尚不能求得它的解析解。基于Fortran 编程,采用 SIMPLE 算法求解二维方腔流动,得到流动达到稳定状态时各物理量的分布。(Lid-driven cavity flow is an incompressible viscous flow, which can be used to test the accuracy and reliability o
源1
- 求解不可压缩流动的涡量-流函数方法,顶盖驱动下的方腔内的流动(Solving the head drive flow)