搜索资源列表
ImprovedAlgorithmBasedonKernelFunctionandApplicati
- 本文的题目是改进的核函数算法及其在人脸识别中的应用研究。 本文在系统学习现有核函数及支持向量机相关理论的基础上,系统研究了自适应选择核函数算法,通过引入朴素正则风险最小化准则,提出了一种改进的在线核函数算法。算法采用截断误差最小化、合理选取拉格郎日因子等方法对新增样本进行训练,有效地克服了现有方法收敛精度低和不能自适应选择样本的困难。 根据独立分量分析的原理和特点,将改进的核函数算法引入人脸识别的研究中,给出了基于ICA
ImprovedAlgorithmBasedonKernelFunctionandApplicati
- 本文的题目是改进的核函数算法及其在人脸识别中的应用研究。 本文在系统学习现有核函数及支持向量机相关理论的基础上,系统研究了自适应选择核函数算法,通过引入朴素正则风险最小化准则,提出了一种改进的在线核函数算法。算法采用截断误差最小化、合理选取拉格郎日因子等方法对新增样本进行训练,有效地克服了现有方法收敛精度低和不能自适应选择样本的困难。 根据独立分量分析的原理和特点,将改进的核函数算法引入人脸识别的研究中,给出了基于ICA
超限学习机理论讲解及编程实现
- 该方法随机给定神经元权值中的输入权值和阈值,然后通过正则化原则计算输出权值,神经网络依然能逼近任意连续系统。(The method gives the input weights and thresholds of neuron weights randomly, and then calculates the output weights by regularization principle. The neural network
RELM
- 正则化学习机,通过对学习过程施加光滑约束,将不适定学习问题转化为适定学习问题,从而避免伪逆的数值不稳定性。(Regularized Extreme Learning Machine)