搜索资源列表
matlab模拟退火算法
- 介绍模拟退火算法的基本原理和步骤,提供SA(模拟退火算法)的标准源程序,是初学者很好的资料
boltzman SA
- boltzman 模拟退火算法例子-Boltzman simulated annealing algorithm examples
sa-ega
- 基于遗传算法的模拟退火-based on genetic algorithm simulated annealing
模拟退火算法
- 简洁得模拟退火算法,用来求函数得极值问题,有兴趣得可以看看。里面提出了一个问题,有兴趣得可以做一个实验-concise in simulated annealing algorithm, used to function in extreme demand, are interested they can look at. They raised a question that interested you can do an expe
模拟退火源码
- 模拟退火算法 模拟退火算法(Simulated Annealing,简称SA算法)是模拟加热熔化的金属的退火过程,来寻找全局最优解的有效方法之一。 模拟退火的基本思想和步骤如下: 设S={s1,s2,…,sn}为所有可能的状态所构成的集合, f:S—R为非负代价函数,即优化问题抽象如下: 寻找s*∈S,使得f(s*)=min f(si) 任意si∈S (1)给定一较高初始温度T,随机产生初始状态S (2)按一定方式,对当前状态作随机扰动
SA-c++
- 这个是SA模拟退火求函数极值用c++编译的程序-the simulated annealing SA is seeking function using extreme procedures c compiler
sa-tsp
- 模拟退火在最短路径求解问题上的实际应用!-simulated annealing for the shortest path problem on the practical application!
SA
- 一个模拟退火算法的改进程序,用来进行矢量量化码本的优化-A simulated annealing algorithm to improve the procedures used for vector quantization codebook optimization
SA
- 模拟退火的原程序,其中还用了GUI界面设计-The original simulated annealing procedures, which also used the GUI interface design
sa+ga
- 采用遗传算法和模拟退火算法解决VLSI中的布局优化问题
K-SA
- 此文档是K类均值聚类和模拟退火结合的软硬件化分算法。众所周知,模拟退火算法的通用性,此算法是模拟退火的改进,较单纯的SA更优秀。-This document is a category K-means clustering and simulated annealing combination of hardware and software sub-algorithm. As we all know, the generic simu
SA
- 这是用模拟退火算法解决0-1背包问题,下载后可直接运行,可以帮助有需要对模拟退火算法进行了解的朋友。-This is a simulated annealing algorithm to solve the 0-1 knapsack problem, after downloading, can be directly run, you can help those in need of the simulated annealing
SA
- 模拟退火GUI演示,利用模拟退火算法求全局最大值最小值-Simulated annealing GUI demonstration, the use of simulated annealing algorithm seeking the global maximum value of the minimum
模拟退火遗传算法程序
- 模拟退火遗传混合算法,求解NP-HARD问题(this program is used to analyse genetic-simulated annealing algorithm (GSA) by matlab)
模拟退火算法及其在求解TSP中的应用
- 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis [1] 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。(The earliest idea of Simulated Annealing (SA)
模拟退火SA
- 模拟退火算法的实现,包含基本算法流程图以及算法实现(The implementation of simulated annealing algorithm)
sa-pso
- 利用模拟退火算法来接受不好的结果来改善粒子群算法,跳出局部最优陷阱。(The simulated annealing algorithm is adopted to accept the bad results to improve the PSO algorithm and jump out of the local optimal trap.)
SA模拟退火
- 模拟退火算法寻优支持向量机C和g,实现识别分类。(Simulated Annealing Optimizes Support Vector Machines C and G for Classification)
PSO(粒子群)-SA(模拟退火)
- 粒子群算法-模拟退火算法,关于matlab的算法说明(Particle swarm optimization-simulated annealing algorithm)
模拟退火算法
- 用于标准VRP问题的模拟退火算法,可运行,适合新手学习。(The simulated annealing algorithm for standard VRP Problem can be run and is suitable for novice learning.)