搜索资源列表
SimuAPSO
- 有基于模拟退火的粒子群算法优化求解无约束优化问题-Simulated annealing based on particle swarm optimization algorithm for solving unconstrained optimization problems
PSO_B_SA
- 基于模拟退火的粒子群优化算法,示例程序,用于求解复杂函数的极值问题(源程序中的示例函数为Camel,Rastrigrin,Ackley)-PSO_A Alogrithm ,Hybrid particle swarm-based-simulated annealing optimization algorithm
SAPSO
- 模拟退火-粒子群算法,该程序将模拟退火算法和粒子群算法相结合,对优化参数有很好的效果-Simulated annealing- particle swarm optimization, the program will be simulated annealing algorithm and particle swarm optimization by combining optimization parameters have a g
SimuAPSO
- 基于模拟退火的粒子群算法,解决无约束优化问题-Based on simulated annealing particle swarm algorithm to solve unconstrained optimization problems
psoandimprovedpso
- 基本粒子群优化算法和改进粒子群优化算法程序,包括:用基本粒子群算法求解无约束优化问题,用带压缩因子的粒子群算法求解无约束优化问题,用线性递减权重粒子群优化算法求解无约束优化问题,用自适应权重粒子群优化算法求解无约束优化问题,用随机权重粒子群优化算法求解无约束优化问题,用学习因子同步变化的粒子群优化算法求解无约束优化问题,用学习因子异步变化的粒子群优化算法求解无约束优化问题,用二阶粒子群优化算法求解无约束优化问题,用二阶振荡粒子群优化算法
PSO
- 基于模拟退火的粒子群算法,模拟退火算法在搜索过程中具有该概率突跳的能力,能够有效地避免搜索过程陷入局部极小解。-Based on simulated annealing particle swarm optimization, simulated annealing algorithm in the search process has a sudden jump in the probability of the capacity,
pso
- 粒子群优化算法是一种进化优化技术,源于对鸟群扑食的行为,是一种基于迭代的优化工具。此文件提供了基本粒子群算法、带压缩因子的粒子群算法、二阶粒子群算法、二阶振荡粒子群算法、权重改进的粒子群算法、混沌粒子群算法、基于杂交的粒子群算法、基于模拟退火的粒子群算法的MATLAB源代码。-PSO is an evolutionary optimization technique, derived from the behavior of the b
NP
- 基于模拟退火的粒子群算法,基于自然选择的粒子群算法,基于杂交的粒子群算法-Based on simulated annealing particle swarm algorithm, based on natural selection, particle swarm optimization, particle swarm optimization based on hybrid
psooptimiton
- 粒子群求解无约束优化问题,包括基本粒子群算法,改进的粒子群算法,还有基于自然选择的粒子群算法和模拟退火的粒子群算法-Swarm for unconstrained optimization problems, including particle swarm algorithm, the improved particle swarm optimization, as well as natural selection based on
SimuA_pso
- 基于模拟退火的粒子群算法。适合初学者对模拟退火和粒子群的理解。(Particle swarm optimization algorithm based on simulated annealing. For beginners, the understanding of simulated annealing and particle swarm.)
粒子群算法源代码
- 改进的粒子群算法,与遗传算法,神经网络,模拟退火等算法相结合(An improved particle swarm optimization algorithm combined with genetic algorithm, neural network, simulated annealing algorithm and so on)
模拟退火算法
- 提出了一种基于粒子群优化(PSO)算法的径向基(RBF)网络参数优化算法,首先利用减聚类算法确定网络径向基函数中心的个数,再用PSO算法优化径向基函数的中心及宽度,最后用PSO算法训练隐含层到输出层的网络权值,找到神经网络权值的最优解,以达到优化神经网络学习的目的。最后,通过一个实验与最小二乘法优化的神经网络进行了比较,验证了算法的有效性。(Particle swarm optimization (PSO) optimization o
13种PSO算法以及课件
- 各算法对应的问题如下: PSO 用基本粒子群算法求解无约束优化问题 YSPSO 用带压缩因子的粒子群算法求解无约束优化问题 LinWPSO 用线性递减权重粒子群优化算法求解无约束优化问题 SAPSO 用自适应权重粒子群优化算法求解无约束优化问题 RandWPSO 用随机权重粒子群优化算法求解无约束优化问题 LnCPSO 用学习因子同步变化的粒子群优化算法求解无约束优化问题 AsyLnCPSO
sa-pso
- 利用模拟退火算法来接受不好的结果来改善粒子群算法,跳出局部最优陷阱。(The simulated annealing algorithm is adopted to accept the bad results to improve the PSO algorithm and jump out of the local optimal trap.)
PSO
- 用二阶振荡粒子群优化算法、混沌粒子群优化算法、基于选择的粒子群优化算法、基于交叉遗传的粒子群优化算法、基于模拟退火的粒子群优化算法求解无约束优化问题(Second order oscillation PSO, chaotic particle swarm optimization algorithm, particle swarm optimization, genetic optimization algorithm based on
粒子群
- 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉
MATLAB智能算法30个案例分析代码
- 压缩包内是关于BeiHang出版的matlab智能算法30个案例的代码,对于学习理解智能算法的原理和编程有一定的帮助。如遗传算法、粒子群算法、免疫优化算法、模拟退火算法、BP算法等。(there are 30 matlab codes, which match a book about intelligence algorithms,such as genetic algorithms, PSO, ACO,BPO,etc. WISH t
PSO(粒子群)-SA(模拟退火)
- 粒子群算法-模拟退火算法,关于matlab的算法说明(Particle swarm optimization-simulated annealing algorithm)
粒子群算法原理及各种改进的PSO的matlab源码
- 各类改进粒子群算法,模拟退火,混合,随即权重,粒子群算法(All kinds of improved particle swarm optimization, simulated annealing, hybrid, random weight, particle swarm optimization)
基于混沌自适应粒子群优化的matlab程序
- 文件包括带压缩因子的粒子群算法,权重改进的粒子群算法,自适应权重法,随机权重法,变学习因子的粒子群算法,异步变化的学习因子,二阶粒子群算法,二阶振荡粒子群算法,混沌粒子群算法,混合粒子群算法,杂交粒子群算法,模拟退火算法(Documents including particle swarm algorithm with compression factor, weighting the improved particle swarm a