搜索资源列表
Nonparametric_Snakes
- 07年的一个IEEE文献.传统的snake是确定一组参数来调整内外力的平衡,本文应用非参数snake把获得参数这一困难的问题转化为求边界的一个好的概率密度估计问题
Parzen
- Parzen窗函数概率密度估计演示程序 完全按照《现代模式识别》孙即祥著作 2.4.4《动态聚类法》算法3实现 使用欧式距离作为测度标准。
Parzen_KNN
- Parzen 窗 和 K近邻法进行概率密度估计 还带一个示波器控件.-Parzen window and K-nearest neighbor method probability density is estimated to bring an oscilloscope control.
基于支持向量机的手写数字识别(小论文+matlab编程及结果)
- 支持向量机的研究现已成为机器学习领域中的研究热点,其理论基础是Vapnik[3]等提出的统计学习理论。统计学习理论采用结构风险最小化准则,在最小化样本点误差的同时,缩小模型泛化误差的上界,即最小化模型的结构风险,从而提高了模型的泛化能力,这一优点在小样本学习中更为突出。SVM理论正是在这一基础上发展而来的,经过十几年的研究和发展,已开始逐步应用于一些领域。在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,已经在模式识别、函数
Parzen_KNN
- Parzen 窗 和 K近邻法进行概率密度估计 还带一个示波器控件.-Parzen window and K-nearest neighbor method probability density is estimated to bring an oscilloscope control.
Nonparametric_Snakes
- 07年的一个IEEE文献.传统的snake是确定一组参数来调整内外力的平衡,本文应用非参数snake把获得参数这一困难的问题转化为求边界的一个好的概率密度估计问题-In 2007 an IEEE literature. Traditional snake is to determine a set of parameters to adjust the balance of power both inside and outside,
anolinerfilter
- 粒子滤波算法受到许多领域的研究人员的重视,该算法的主要思想是使用一个带有权值的粒子集合来表示系统的后验概率密度。在扩展卡尔曼滤波和Unscented卡尔曼滤波算法的基础上,本文提出一种新型粒子滤波算法。首先用Unscented卡尔曼滤波器产生系统的状态估计,然后用扩展卡尔曼滤波器重复这一过程并产生系统在k时刻的最终状态估计。在实验中,针对非线性程度不同的两种系统,分别采用五种粒子滤波算法进行实验。结果证明,本文所提出算法的各方面性能都明
Parzen
- Parzen窗函数概率密度估计演示程序 完全按照《现代模式识别》孙即祥著作 2.4.4《动态聚类法》算法3实现 使用欧式距离作为测度标准。-Parzen window probability density function is estimated demo program in full accordance with the
yiwei
- 一维序列概率密度的估计 -Sequence of one-dimensional probability density estimation
parzendm
- 模式识别中的parzen窗估计概率密度的一个自编的函数-Pattern Recognition Parzen window estimate of probability density function of a self-
parzen
- parzen窗法,功能是根据样本进行概率密度函数估计。实现了对正态分布概率密度函数和均匀分布双峰概密函数进行估计-Parzen window method, function is based on a sample of the estimated probability density function. The realization of the normal distribution probability density f
1
- 自适应核密度估计运动检测方法 提出一种自适应的核密度(kernel density estimation, KDE)估计运动检测算法. 算法首先提出一种自适应前景、背景阈值的双阈值选择方法, 用于像素分类. 该方法用双阈值能克服用单阈值分类存在的不足, 阈值的选择能自适应进行, 且能适应不同的场景. 在此基础上, 本文提出了基于概率的背景更新模型, 按照像素的概率来更新背景, 并利用帧间差分背景模型和KDE分类结果, 来解决背景更
parzen
- 这是一个有关parzen窗估计的代码,用来估计概率密度函数,在模式识别中有很多重要的地位-This is a window of the estimated parzen code, used to estimate the probability density function, in the pattern recognition there are many important position ~ ~
parzen
- 用parzen窗方法,估计概率密度,采用高期核函数-With parzen window means of estimating the probability density function using high nucleus. . . .
GenerationOfTheLog-normalDistributionClutter
- 本程序已被本人整理到WORD文档中,编程语言为MATLAB,本文设计的滤波器采用傅里叶级数展开法。模拟的杂波的功率谱密度采用BVURG法,概率密度函数的估计采用直方图估计法,设计参数皆在文档中表明。此程序已经验证是正确可执行的,并能生成图形,值得下载!-This program has been organized into WORD document I, the programming language MATLAB, the fi
gkdj
- 以为高斯和密度估计,使用高斯核的非参数密度估计方法,对样本进行概率密度估计,程序中给出了窗宽的估算公式。-That the Gaussian and density estimation, using Gaussian kernel non-parametric density estimation method, the sample probability density estimates, the program gives t
bayes-classsifier
- 该程序源码中包括了各种典型分布的二维数据的自动生成,二维概率密度函数的极大似然估计和窗函数估计,bayes分类器的设计和分类器错误率的多种方法估计-The program includes a variety of typical source distribution of the automatic generation of two-dimensional data, two-dimensional probability den
模式识别第一次作业
- 1. 用 dataset1.txt 作为训练样本,用dataset2.txt 作为测试样本,采用身高和体重数据为特征,在正态分布假设下估计概率密度(只用训练样本),建立最小错误率贝叶斯分类器,写出所用的密度估计方法和得到的决策规则,将该分类器分别应用到训练集和测试集,考察训练错误率和测试错误率。将分类器应用到dataset3 上,考察测试错误率的情况。(1. using dataset1.txt as training samples
Nonparametric kernel density
- 计算数据的累计概率密度,采用三次样条插值计算分位点的值,区间预测,里面有具体程序及相关文献。(The cumulative probability density of the calculated data is calculated by three spline interpolation)
matlab二维核密度估计kde2d
- 二维核密度估计代码的代码,能够提供二维的概率估计(two-dimensional kernal density estimation)