搜索资源列表
样条曲线
- 显示绘制B样条曲线
三次B样条曲线
- 用C语言编写的三次B样条曲线源代码!-C language prepared by the cubic B-spline curves source code!
二次B样条曲线
- 2次B样条曲线算法-2nd B-spline curve algorithm
B样条曲线
- b样条曲线(左键确定点,右键结束)-b-spline curve (Left determine point, right end)
三次参数样条曲线
- VB 画三次参数样条曲线的小程序,比较精致:-)-VB painting three parameters- spline curves of small procedures, more refined :-)
二次B样条曲线的绘制
- 从用c语言编出程序要用文件输入数据。 绘制二次B样条曲线的表达式: P(0,2)(t)=P0*G(0,2)(t)+P1*G(1,2)(t)+P2*G(2,2)(t) 0<=t<=1-from using language out to document procedures with the input data. Drawing II B-spline curves of expression : P (0,2) (t)
抛物样条曲线
- 在Win-Tc下运行,C语言的,这是抛物样条曲线的程序,没有在visual c++中试过-Win- Tc running, the C language, this is kind of parabolic curve procedures, not visual, c tried
样条曲线类CSpline加等值线修改实例
- 样条曲线类CSpline加等值线修改实例,程序运行实例类似CAD中的样条曲线划法.-spline curves category CSpline increase contour changes examples, examples of similar procedures in the CAD spline curve is France.
三次样条曲线拟合
- 三次样条曲线拟合 这个也是数学方法中的常用计算程序 学过的人都知道的-cubic spline curve fitting This is a mathematical method of calculation procedures used to learn the know
B样条曲线反求_OpenGL环境--数据点加入输出点列
- 自己编的三次非均匀B样条曲线反求:给定数据点列,反求控制点,节点向量,按照给定精度,等分参数区间,离散B样条曲线,输出离散点列,模拟真实曲线.此算法包括德布尔-考格斯算法,节点向量算法,反求控制点,以及节点插入技术.对搞图形学的朋友比较有参考作用.-own series of the three non-uniform B-spline curves Reverse : Given a data set, reverse control
绘制b样条曲线
- 生成、显示B样条曲线: (1)用鼠标或者光标输入控制点,在屏幕上用图形符号标记显示。 (2)自定义输入曲线次数。 (3)可选择4种曲线类型。 (4)可以对顶点位置,曲线次数,曲线类型进行修改。-generation, showed that B-spline curves : (1) to use the mouse or the cursor input control points on the screen wi
B样条曲线1
- B样条曲线1-B-spline curves 1!
B样条曲线反求_OpenGL环境--数据点加入输出点列
- 三次非均匀B样条曲线反求:给定数据点列,反求控制点,节点向量,按照给定精度,等分参数区间,离散B样条曲线,输出离散点列,模拟真实曲线.此算法包括德布尔-考格斯算法,节点向量算法,反求控制点,以及节点插入技术.对搞图形学的朋友比较有参考作用.(Three non uniform B spline curve in reverse: given data points, reverse control points, node vector
用c语言编程绘制二维三次b样条曲线
- 采用C语言编写程序,根据已知点绘制样条曲线,可以用于开发gambit脚本功能进行飞机翼型参数化建模(The program is written in C language, and the spline curve is drawn according to the known points)
3次B样条曲线拟合
- 离散点曲线 进行3次B样条曲线拟合 包括节点参数化过程 基函数计算过程 控制点反求过程 到最后拟合曲线的显示(The discrete point curve is fitted with 3 B spline curves, including the node parameterization process, the basis function calculation process, the control point in
三次样条曲线拟和
- 三次样条曲线拟合类,可用于样条插值、拟合、预测等算法场合。(The Cubic Spline Interpolation class can be used for spline interpolation, fitting, prediction and other algorithms.)
MATLAB绘制B样条曲线
- 三种b样条曲线的绘制,beizer曲线、以及两种B样条曲线的绘制(draw Bezier Bspline)
利用de Boor算法绘制B样条曲线
- 运用计算机图形学的知识,采用4阶B样条基函数,节点向量取为[0,0,0,0,1/4,2/4,3/4,1,1,1,1] 先绘制控制多边形,再用分段直线段绘制B样条曲线(Using the knowledge of computer graphics, the 4 order B spline basis function is used, and the node vector is taken as [0,0,0,0,1/4,2/
matlab绘制B样条曲线正算反算
- 介绍利用matlab绘制B样条曲线时进行正算反算,有一定参考价值。(This paper introduces the use of MATLAB to draw the B spline curve, and it has some reference value.)
二、三次均匀B样条曲线
- 根据输入点坐标画出二次或三次均匀B样条曲线(According to the input point coordinates, draw two or three uniform B spline curves.)