搜索资源列表
最近邻法分类器演示
- 本程序是一个最近邻分类算法的演示程序,本程序完成了三种最近邻的演示并实现算法的分析-this procedure is a nearest neighbor classification algorithm the demo program, the completion of a three - Nearest Neighbor algorithm demonstration and analysis
最近邻法分类器演示
- 本程序是一个最近邻分类算法的演示程序,本程序完成了三种最近邻的演示并实现算法的分析-this procedure is a nearest neighbor classification algorithm the demo program, the completion of a three- Nearest Neighbor algorithm demonstration and analysis
tsp_tsp
- 中国所有大中城市的TSP问题实现。图形演示。采用最近邻法则-all of China's large and medium-sized cities in the TSP to achieve. Presentation graphics. Neighbors recently adopted rules
NearestRecognation
- 程序实现了.net环境下,C++语言的手写数字识别,程序对手写数据进行了去边框处理,采用最近邻法进行了分类-achieved with the program. Net environment, the C language handwritten numeral recognition, procedures for handwritten data to the fr a me, using nearest neighbor met
Classify_Homework
- 模式识别作业——用平均样本法,平均距离法,最近邻法和K近邻法进行分类-pattern recognition operations-- with the average sample, the average distance, nearest neighbor and K-nearest-neighbor classification
knn
- 朴素贝叶斯(Naive Bayes, NB)算法是机器学习领域中常用的一种基于概率的分类算法,非常简单有效。k近邻法(k-Nearest Neighbor, kNN)[30,31]又称为基于实例(Example-based, Instance-bases)的算法,其基本思想相当直观:Rocchio法来源于信息检索系统,后来最早由Hull在1994年应用于分类[74],从那以后,Rocchio方法就在文本分类中广泛应用起来。-Naive
billiner
- 一个用matlab编写的最近邻插值法求图像的范大于缩小的小程序-Matlab prepared using a nearest neighbor interpolation for images larger than narrow the scope of small programs
knn
- knn k近邻算法,可选择欧式距离或者曼哈顿距离-knn k nearest neighbor, Euclidean distance or Manhattan can choose the distance
Researchontheshapefeatureextractionandrecognition.
- 主分量分析(PCA ) 是统计学中分析数据的一种有效的方法, 可以将数据从高维数据空间变换到低维特征空间, 因而 可以用于数据的特征提取及压缩等方面。在该文的形状识别系统中, 用PCA 法提取图像的形状特征, 能够较好地满足识别 层的输入要求。在识别层研究了3 种识别方法: 最近邻法则、BP 网络及协同神经网络方法, 均取得了满意的实验效果。-Principal component analysis (PCA) is a sta
shuangxianxingchazhisuofangtuxiang
- 本实验采用双线形插值技术进行图像的缩放。该方法输出的像素值是它在输入图像中2*2邻域采样点的平均值,它根据某像素周围4个像素的灰度值在水平和垂直方向两个方向上对其插值。在进行图像缩放时,其考虑到了相邻近的像素点间的关系。这种平均算法具有放锯齿效果,创造出来的图像拥有平滑的边缘,锯齿难以察觉,所以相对于最近邻法,其的效果比较好。在进行程序设计时,程序的输入参数为图像矩阵和结果图像的水平和垂直方向的像素数,可以忽略混叠效应。在程序运行之后可
IDASimulation
- 本文针对SLAM数据关联中使用最为广泛的最近邻方法作了改进,利用特征估计位置与载体预测位置之间的欧氏距离计算代替了全部特征与每个量测之间的马氏距离计算,避免了大量的矩阵乘法计算。该算法简单易行,降低了算法的计算复杂度,有利于SLAM算法的实时执行,且关联效果与全局最近邻法相同-In this paper, SLAM data association in the most widely used methods of improving
GeoTrans
- 数字图像处理中,灰度图像的放大、缩小,平移和旋转功能实现的源代码,分别采用最近邻插值法和双线性插值方式实现。-Digital image processing, the gray-scale image to enlarge, narrow, pan and rotate functions of the source code, respectively, using nearest neighbor interpolation an
moshishibie
- 先用C-均值聚类算法程序,并用下列数据进行聚类分析。在确认编程正确后,采用蔡云龙书的附录B中表1的Iris数据进行聚类。然后使用近邻法的快速算法找出待分样本X(设X样本的4个分量x1=x2=x3=x4=6;子集数l=3)的最近邻节点和3-近邻节点及X与它们之间的距离。-First C-means clustering algorithm procedures and with the following data for cluste
pcafacerecognition
- 基于主成分分析(PCA)的人脸识别系统 利用2D PCA算法求对训练集向量进行降维的降维矩阵,最近邻法测试对测试集识别的精度-pca face recognition
Nearestneighbor
- 模式识别问题最近邻算法的matlab实现,可以模拟实现最近邻法的核心,是一个不错的代码- Nearest neighbor algorithm for pattern recognition problem of matlab to achieve, can simulate the nearest neighbor method to achieve the core of the code is a good
nearest
- 模式识别问题最近邻算法的matlab实现,可以模拟实现最近邻法的核心,是一个不错的代码,nearest neighbor-Nearest-neighbor algorithm for pattern recognition problem of matlab implementation, can be simulated to achieve the core of the nearest neighbor method is a g
ClassifyHomework
- 模式识别,用平均样本法、平均距离法、最近邻法、K近邻法进行分类。-Pattern recognition, with an average of the sample method, the average distance method, nearest neighbor, K-NN classification.
zuijinlinfenlei
- 我们使用MATLAB软件实现了人脸识别并统计其识别率。本实验采用PCA(主成分分析)方法,利用K-L变换和奇异值分解原理实现。并分别采用最近邻法分类器得出它们的成功率。-We use face recognition software and the MATLAB Statistics recognition rate. The present study, PCA (principal component analysis) meth
最近邻插值的实现
- 最近邻插值法nearest_neighbor是最简单的灰度值插值。也称作零阶插值,就是令变换后像素的灰度值等于距它最近的输入像素的灰度值。(Nearest neighbor interpolation method, nearest_neighbor is the simplest gray value interpolation. Also called zero order interpolation, that is, the g
NearestNeighbor
- 采用最近邻法对图像进行插值,进行n倍的缩放,有示例图片,有注释,可运行,欢迎交流。(Using the nearest neighbor method for image interpolation, n times zoom, there are examples of pictures, notes, can run, welcome exchanges.)