搜索资源列表
K-均值聚类算法C++编程
- K-均值聚类算法的编程实现。包括逐点聚类和批处理聚类。K-均值聚类的的时间复杂度是n*k*m,其中n为样本数,k为类别数,m为样本维数。这个时间复杂度是相当客观的。因为如果用每秒10亿次的计算机对50个样本采用穷举法分两类,寻找最优,列举一遍约66.7天,分成3类,则要约3500万年。针对算法局部最优的缺点,本人正在编制模拟退火程序进行改进。希望及早奉给大家,倾听高手教诲。-K-means clustering algorithm pr
K-均值聚类算法C++编程
- K-均值聚类算法的编程实现。包括逐点聚类和批处理聚类。K-均值聚类的的时间复杂度是n*k*m,其中n为样本数,k为类别数,m为样本维数。这个时间复杂度是相当客观的。因为如果用每秒10亿次的计算机对50个样本采用穷举法分两类,寻找最优,列举一遍约66.7天,分成3类,则要约3500万年。针对算法局部最优的缺点,本人正在编制模拟退火程序进行改进。希望及早奉给大家,倾听高手教诲。-K-means clustering algorithm pr
pujulei
- 谱聚类算法建立在谱图理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。 该算法首先根据给定的样本数据集定义一个描述成对数据点相似度的亲合矩阵,并且计算矩阵的特征值和特征向量 , 然后选择合适 的特征向量聚类不同的数据点。谱聚类算法最初用于计算机视觉 、VLS I 设计等领域, 最近才开始用于机器学习中,并迅速成为国际上机器学习领域的研究热点。-Spectral clustering alg
ZPclustering
- 谱聚类算法建立在谱图理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。 该算法首先根据给定的样本数据集定义一个描述成对数据点相似度的亲合矩阵,并且计算矩阵的特征值和特征向量 , 然后选择合适 的特征向量聚类不同的数据点。谱聚类算法最初用于计算机视觉 、VLS I 设计等领域, 最近才开始用于机器学习中,并迅速成为国际上机器学习领域的研究热点。-Spectral clustering
K_Means
- K-Means是聚类算法中的一种,其中K表示类别数,Means表示均值。顾名思义K-Means是一种通过均值对数据点进行聚类的算法。K-Means算法通过预先设定的K值及每个类别的初始质心对相似的数据点进行划分。并通过划分后的均值迭代优化获得最优的聚类结果。(K-Means is one of the clustering algorithms, in which K represents the number of classes,
最优聚类数
- 运用matlab软件可实现矩阵的最优聚类数的计算(Using matlab software can realize the matrix calculation of the optimal number of clusters)