搜索资源列表
200512-616
- 一种改进的粒子滤波算法的研究 粒子滤波基本原理,通过改进权重计算、重采样算法, 计算速度得到提高。改进的算法在DSP系统中进行目标跟踪仿真,证明其具有速度快、 精度高的特点。
200512-616
- 一种改进的粒子滤波算法的研究 粒子滤波基本原理,通过改进权重计算、重采样算法, 计算速度得到提高。改进的算法在DSP系统中进行目标跟踪仿真,证明其具有速度快、 精度高的特点。
basic_PSO_with_w_c
- 带有收缩因子和惯性权重的基本PSO粒子群算法源代码。本源代码模块化编写,结构清晰,便于改进和做数值实验-With contraction factor and inertia weight PSO basic particle swarm algorithm source code. Source code modular preparation, structure, clear, easy to improve and to do
PSO-SVM
- 改进PSO-SVM在说话人识别中的应用。通过对粒子群优化算法中惯性权重和全局最优值 的分析,提出了一种根据迭代次数而自适应变化的惯性权重的粒子群优化方法-Improvement in the PSO-SVM speaker recognition applications. Through particle swarm optimization algorithm in the inertia weight and the ana
goplotpso
- 改进全局粒子群算法,加入时下论文中介绍的收敛因子和惯性权重,比传统基本算法效率高-Particle swarm optimization to improve the overall situation, adding the current paper are described in the convergence factor and inertia weight, the basic algorithm than the tra
psoandimprovedpso
- 基本粒子群优化算法和改进粒子群优化算法程序,包括:用基本粒子群算法求解无约束优化问题,用带压缩因子的粒子群算法求解无约束优化问题,用线性递减权重粒子群优化算法求解无约束优化问题,用自适应权重粒子群优化算法求解无约束优化问题,用随机权重粒子群优化算法求解无约束优化问题,用学习因子同步变化的粒子群优化算法求解无约束优化问题,用学习因子异步变化的粒子群优化算法求解无约束优化问题,用二阶粒子群优化算法求解无约束优化问题,用二阶振荡粒子群优化算法
SAPSO
- 权重改进粒子群算法中的自适应权重法,平衡了PSO算法的全局探索能力和局部改良能力-Weight improved particle swarm algorithm in the adaptive weighting method to balance the global exploration of the PSO algorithm is improved capacity and capacity of local
RandWPSO
- 权重改进粒子群算法中的随机权重法,将标准PSO算法中设定w为服从某种随机分布的随机数,这样一定程度上可从两方面克服w的线性递减所带来的不足-Weights improved particle swarm algorithm in the random weight method, the standard PSO algorithm to set w to obey a random distribution of the random
PSO
- 带有收缩因子和惯性权重的基本PSO粒子群算法源代码。本源代码模块化编写,结构清晰,便于改进和做数值实验 -With the shrinkage factor and the basic PSO inertia weight particle swarm algorithm source code. Modular source code written in a clear structure, easy to improve an
weighted_median_filter
- 一种中值滤波的改进方法,基于滤波窗口邻域权重的中值滤波。-A median filter improvement method, based on filtering window neighborhood the weights of the median filter.
NLG
- 在NLM去噪方法中引进新的距离计算方法,从而改进权重的计算方法-NLM denoising method to introduce a new distance-based methods, thus improving the weight calculation method
PSO
- 具有随机权重的优化的粒子群调度算法,改进了权重的计算,使得权重的取值不超过0.9-Having random weight particle swarm optimization scheduling algorithm to improve the calculation of the weight, so that the weight values of no more than 0.9
IET_CV_2010
- 一种改进的背景权重的Meanshift跟踪方法-Robust Mean Shift Tracking with Corrected Background-Weighted Histogram
weightpso
- 关于粒子群的改进算法 基于改变权重的matlab程序 可供大家学习矫正-About PSO algorithm based matlab program to change the weights corrected for them to learn
wsn-for-DSP-system
- 一种改进的粒子滤波算法的研究 粒子滤波基本原理,通过改进权重计算、重采样算法, 计算速度得到提高。改进的算法在DSP系统中进行目标跟踪仿真,证明其具有速度快、 精度高的特点-An improved study the basic principles of particle filter particle filter algorithm, recalculation by improving the rights, resamplin
权重改进的粒子群算法
- 用于车辆参数最优选取,求取目标函数最大、最小值,对非线性、多峰问题均具有较强的全局搜索能力(It is used for the optimal selection of vehicle parameters, and the maximum and minimum values of the objective function are obtained. It has a strong global search ability f
粒子群算法
- 用改进的粒子群算法对基于非对角MAC矩阵元素均值最小目标函数为目标函数,以简支梁前三阶模态振型为原始数据对简支梁进行传感器优化布置。(The objective function based on the average minimum objective function of the non-diagonal MAC matrix elements is studied by the improved particle swarm
PSO_R改进权重
- PSO,改进权重的储能优化策略,simulink搭建(PSO, an improved energy storage optimization strategy, Simulink build)
自适应权重的PSO
- 自适应权重的粒子群算法,实现复杂问题的有效求解(Particle Swarm Optimization with Adaptive Weight for Effective Solution of Complex Problems)
PSO的PID控制器
- 针对一般的粒子群优化(PSO)学习算法中存在的容易陷入局部最优和搜索精度不高的缺点,对改进型PSO算法进行研究。由于惯性权重系数ω对算法是否会陷入局部最优起到关键的作用,因此,通过改变惯性权重ω的选择,对惯性权重系数采取线性减小的方法,引入改进型的PSO算法。采用改进的PSO算法对PID控制器进行参数优化并把得到的最优参数应用于控制系统中进行仿真。仿真实验结果表明:改进型PSO算法不会陷入局部最优,能得到全局最优的PID控制器的参数,并