搜索资源列表
ImprovedSVM
- 将遗传算法(GA)与传统SVM算法结合,构造出一种参数最优的进化SVM(GA2SVM),SVM 模型采用径向基函数(RBF)作为核函数,利用格雷码编码方式对SVM算法的模型参数进行遗传编码和优化搜索,将搜索到的优化结果作为SVM 的最终模型参数。
libsvm-2.85-dense
- LIBSVM源码。LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、 易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC、 n - SVC )、回归问题(包括e - SVR、n - SVR )以及分布估计(one-class-SVM ) 等问题,提供了线性、多项式、径向基和S形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、
libsvm-2.89
- LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、 易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC、 n - SVC )、回归问题(包括e - SVR、n - SVR )以及分布估计(one-class-SVM ) 等问题,提供了线性、多项式、径向基和S形函数四种常用的核函数供选择,可 以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概 率估
ImprovedSVM
- 将遗传算法(GA)与传统SVM算法结合,构造出一种参数最优的进化SVM(GA2SVM),SVM 模型采用径向基函数(RBF)作为核函数,利用格雷码编码方式对SVM算法的模型参数进行遗传编码和优化搜索,将搜索到的优化结果作为SVM 的最终模型参数。-Genetic algorithm (GA) combined with the traditional SVM algorithm, a kind of tectonic evolution
libsvm-2.85-dense
- LIBSVM源码。LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、 易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC、 n - SVC )、回归问题(包括e - SVR、n - SVR )以及分布估计(one-class-SVM ) 等问题,提供了线性、多项式、径向基和S形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、
libsvm-2.88
- LIBSVM 是台湾大学林智仁 (Chih-Jen Lin) 博士等开发设计的一个操作简单、易于使用、快速有效的通用 SVM 软件包,可以解决分类问题(包括 C- SVC 、n - SVC )、回归问题(包括 e - SVR 、 n - SVR )以及分布估计( one-class-SVM )等问题,提供了线性、多项式、径向基和 S 形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题
libsvm-2.89
- LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC、n - SVC )、回归问题(包括e - SVR、n - SVR )以及分布估计(one-class-SVM )等问题,提供了线性、多项式、径向基和S形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。 2.8
SVM_SteveGunn
- 支持向量机的基本理论是从二类分类问题提出的,常用的核函数有:多项式、径向基、Sigmoid型。对于同一组数据选择不同的核函数,基本上都可以得到相近的训练效果。-Support vector machine' s basic theory is the question of second-class classification, commonly used kernel functions include: polynomial
rbfSVM
- 基于RBF径向基核函数实现SVM支撑矢量机算法,-SVM algorithm based on RBF kernel
7
- 本文提出一种基于核方法的下视等分辨率景象匹配算法. 通过模拟电荷吸引模型, 提出了计算不等维高维数据相似度的SNN 核函数. 将图像中的特征点映射到径向基向量(Radial basis vector, RBV) 空间, 利用SNN 核函数计算两个特征点集的相似度及过渡矩阵. 利用置换测试模块来增强SNN 核的稳定性, 以确保输出解的可靠性. 实验证明, 基于SNN 核的景象匹配算法对图象畸变、噪声干扰与信号缺失具有很强的鲁棒性, 并可保
score
- 对获得的512维小波特征进行了PCA降维处理,将特征空间降至100维,并采用前面得出的最佳系数针对多项式核函数和高斯径向基核函数-On access to the 512-dimensional wavelet features to reduce the dimension of the PCA, will feature space to 100 dimensions, and using the best coefficients
chengxu1
- 支持向量机的程序,本程序选用径向基函数作为核函数,测试样本随机取,可根据具体情况运用。-Support vector machine procedures, the procedures used radial basis function as kernel function, the test samples were taken, according to the specific circumstances of use.
2
- 是关于神经网络的数据分类预测的一个源代码,关于向量机的,采用径向基核函数-Neural network data classification forecast
WSVMcgForClass
- SVM高斯径向基核函数 matlab语言 简单易懂-SVM Radial Basis Function
imbanlace_kernel
- 基于径向基核函数的不均衡数据集的极限学习机分类源代码-Based on radial basis function unbalanced datasets Extreme Learning Machine classifier source code
PeopleDensitydll
- 视频图像的人群密度检测,多种人群密度场景下人群计数算法: 算法功能:建立图像特征和图像人数的数学关系 算法输入:训练样本图像1,2…K 算法输出:模型估计参数 ,参考图像 算法流程:1)对训练样本图像进行分块处理(算法1.1); 2)通过算法1.2,计算训练样本各个对应分块的ALBP特征归一化,再用K-means算法(可使用opencv等算法库实现,不再描述其算法),将图像块分成k(k<K)类,获取k(k<
rbf
- 径向基核函数测试函数,内含多个测试函数,可用于统计算法、支持向量机算法内核计算-Radial basis function kernel function test, includes a plurality of test functions
svm
- 基于RBF径向基核函数实现SVM支撑矢量机算法使用RBF,garma值为0.5-Based on RBF radial basis kernel function to achieve SVM support vector machine algorithm using Garma, RBF value of 0.5
SVM
- 用svm算法实现手写识别,核函数使用径向基核函数(Handwritten recognition using SVM algorithm)
SMO optimization algorithm
- SMO 优化算法 径向基核函数 代码加数据 实例 机器学习实战第六章代码(SMO optimization algorithm radial basis function)