搜索资源列表
计算几何算法
- 计算几何常用算法,包括点是否在多边型中,判定两条直线是否相交,平面最近点对-computational geometry algorithm commonly used, including whether a multilateral type in determining whether the intersection of two straight, the nearest point on Plane
计算几何算法
- 计算几何常用算法,包括点是否在多边型中,判定两条直线是否相交,平面最近点对-computational geometry algorithm commonly used, including whether a multilateral type in determining whether the intersection of two straight, the nearest point on Plane
Divide22.c
- 分治算法的实现,输入N个节点数据(如个在一条直线上则只有一个数,平面上则以数据对形式实现),可以得到其中距离最近的两点数据及其距离。-partition algorithm implementation, the importation of N-node data (eg 000 in a straight line only a few. while data on the plane on the form), which can
ClosetPair
- 实现求解平面最近点对的复杂度为nlgn的算法。程序要求能够自动生成至少100万个点,并利用该算法求解。此外,要求支持图形界面的算法输入与输出。在此基础上,添加n^2级算法的实现,并比较相同规模下,两种算法的时间消耗。-Solving the nearest point on the plane to achieve the complexity of the algorithm for nlgn. Program requires th
zjdd
- 用于计算二维平面上一个点集的最近点对,可以计算100000个点的规模-Used to calculate the two-dimensional plane, a set of points the last points, we can calculate the size of 100000 points
dbPoint.c
- C语言实现,分治法求平面中任意个点的最近点对和最近距离。-C language implements, find out the shortest point pair and the shortest length between arbitrary points in a plane, with divide and conquer method.
PointPair
- 根据分治算法实现求平面上最近点对的复杂度为(nlgn)的算法 有图形界面,能通过鼠标输入点-Under sub-rule algorithm seeking the nearest point on the plane of the complexity of (nlgn) algorithm for graphical interface, through mouse input points
cloestPair
- 最近点对程序,java实现。可以计算平面内的最近点对-The nearest point on the program, java implementation. Can calculate the closest point on plane
ClosestPairOfPoints
- 本文实现了平面内NlogN时间内,查找最近点对的算法,欢迎大家下载-This implements the plane NlogN time, find the nearest point of the algorithm, are welcome to download
MinDistance_PointPair
- 用java实现的平面上最近点对的查找,包括蛮力法和分治法的实现。-Java implementation of the plane with the nearest point on the search, including the brute force method and the divide and conquer implementation.
closepair
- 二位平面中求最近点对的问题,采用分治的方法,按照书本的算法实现-Two nearest points on the plane ask the question, the use of divide and conquer approach, in accordance with the books of the algorithm
nearestpoint
- 随机在二维平面上生成一千个点,再利用分治算法计算这一千个点中的最近点对,并返回这两个点的距离和坐标-Randomly generated on a two-dimensional plane a thousand points, and then use divide and conquer algorithm to calculate these thousand points of the nearest point on, and
ClosestPair
- 平面最近点对问题是计算几何学中研究的基本问题之一。假设在平面S上有n个点,在这n个点所组成的点对中,寻找距离最近点对问题。例如:有两点 与 。它们之间的距离为: 。n个点可以组成 个点对,找其中的一点对,使得在n个点组成的所的点对中,该点对的 为最小。-Plane closest point to the problem is one of the basic problems of research in computational
ClosetPairOfPoints
- 求平面点集最近点对,算法导论课程实验,基本实现,可借鉴-For the nearest point on the plane point set, introduction to algorithms course experiment
CPPT
- 给定一个平面,内有n个点,找出其中距离最近的两个点。采用图形界面,n的个数大于100,随机生成点。 采用QT Creator生成坐标轴界面 分而治之算法计算最近点对。-Given a plane, there are n points, find out where the nearest two points. Use graphical interface, the number n is greater than 100, ran
Computational-Geometry
- 点是否在多边型中、判定两条直线是否相交、平面最近点对-Point is in polygon, it is determined whether the two lines intersect, the nearest point on the plane
最近点对
- 已知平面上有n个点,点为二维数组,求平面上的最近点对。(Find the nearest point pair on the plane)
平面内最近点对
- 分治算法练习,使用分治算法实现计算平面内最近点对距离。子问题将平面划分为左右两部分分开计算最短距离,再在中间条带中找是否有更近点对。(Divide and conquer algorithm to calculate the closest point pair in the plane)
ClosestPair
- 求解平面最近点对,分治经典题目。。。。。。。(The program to solve the nearest point pair of the plane, divide and conquer the classic topic.)
closest_pair_of_points
- C++11标准下编写的平面最近点对算法,包括暴力算法与O(nlogn)的算法。使用纯面向对象的方式编写,提供了测试类。(The plane closest point pair algorithm based on C++11 standard, including the algorithm of violent algorithm and O (nlogn). Written in a purely object-oriented