搜索资源列表
ADAPTIVE-IMAGE-FUSION-ALGORITHM
- 针对低可见光图像和红外图像的特点,提出一种基于DT-CWT的自适应图像融合算法.该算法具有好的平移不变性和方向选择性,更适合于人类视觉.先对源图像作双树复小波变换,充分考虑各尺度分解层的系数特征,对 低通子带引入免疫克隆选择,根据统计评价准则定义亲和度函数,自适应获得最优融合权值 对高通子带则根据人类视觉特性定义局部方向对比度,并作为融合准则,突出和增强了各源图像的对比度与细节信息.实验结果表明: 与基于小波的融合结果相比较,本
WAVE-weifengyin
- 小波变换具有多分辨率分析的特点,并且在时频两域都具有表征信号局部特征的能力。小波变换通过将时间系列分解到时间频率域内,从而得出时间系列的显著的波动模式,即周期变化动态,以及周期变化动态的时间格局(Torrence and Compo, 1998)。小波(Wavelet),即小区域的波,是一种特殊的、长度有限,平均值为零的波形。它有两个特点:一是“小”,二是具有正负交替的“波动性”,即直流分量为零。小波分析是时间(空间)频率的局部化分析,
DWT-watermarkzip
- 小波分析是从傅立叶分析发展出来的一种新的时间频率分析方法,由于它的多尺度分析特征,又被称为时间尺度分析方法。小波变换的基本思想是将原始信号经伸缩及平移后,分解为一系列具有不同空间分辨率、不同频率特性和方向特性的子带信号,这些子带信号具有良好的时域、频域局部特性,这些特征可用来表示原始信号的局部特征,进而实现对信号时间、频率的局部化分析。-DWT-watermark method
115
- 本文针对基于经验模态分解EMD的时空滤波器存在的固有模态函数分量中频率混叠交叉导致有用信号与噪声一起被滤除的问题结合小波在时间尺度两域表征信号局部特征的特性提出了一种基于能量估计实现EMD分解层数确定-In this paper, based on empirical mode decomposition EMD temporal filter mode functions inherent component of cross-fre
lcdyt
- 鉴于LCD方法存在的问题,本文提出了一种基于互相关匹配端点延拓局部特征尺度分解(Cross-correlation matching endpoint Extension Local Characteristic scale Decomposition,简称CELCD),由于LCD分解原理是依据信号的局部极值点信息不断进行筛分信号,在信号分解时需要先确定信号的局部极值点,而信号的两个端点可能不是极值点,因此在信号两端点就会出现虚假成分,
xujiayshangchuan
- 经验模态分解(Empirical Mode Decomposition,简称EMD)法是美籍华人N. E. Huang等人于1998年提出的,适合于分析非线性、非平稳信号序列,具有很高的信噪比。该方法的关键是经验模式分解,它能使复杂信号分解为有限个本征模函数(Intrinsic Mode Function,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。-Empirical Mode Decomposit
EMD
- 经验模态分解(Empirical Mode Decomposition,简称EMD)法是美籍华人N. E. Huang等人于1998年提出的,适合于分析非线性、非平稳信号序列,具有很高的信噪比。该方法的关键是经验模式分解,它能使复杂信号分解为有限个本征模函数(Intrinsic Mode Function,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。(Empirical mode decomposit
emd
- 该方法的关键是经验模式分解,它能使复杂信号分解为有限个本征模函数(Intrinsic Mode Function,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。经验模态分解法能使非平稳数据进行平稳化处理,然后进行希尔伯特变换获得时频谱图,得到有物理意义的频率。与短时傅立叶变换、小波分解等方法相比,这种方法是直观的、直接的、后验的和自适应的,因为基函数是由数据本身所分解得到。由于分解是基于信号序列时间尺度
package_emd
- 经验模态分解(Empirical Mode Decomposition,EMD)法是黄锷(N. E. Huang)在美国国家宇航局与其他人于1998年创造性地提出的一种新型自适应信号时频处理方法,特别适用于非线性非平稳信号的分析处理。对经过EMD处理的信号再进行希尔伯特变换,就组成了大名鼎鼎的“希尔伯特—黄变换”(HHT)。由于脑电信号处理很少在EMD之后接上希尔伯特变换,在这里仅介绍EMD的相关基础知识。 EMD其实就是一种对信
EMD模型
- 经验模态分解(Empirical Mode Decomposition,简称EMD))方法被认为是2000年来以傅立叶变换为基础的线性和稳态频谱分析的一个重大突破?,该方法是依据数据自身的时间尺度特征来进行信号分解,无须预先设定任何基函数。 该方法的关键是经验模式分解,它能使复杂信号分解为有限个本征模函数(Intrinsic Mode Function,简称IMF),所分解出来的各IMF分量包含了原信号的不同时
LCD
- 局部特征尺度分解程序,包含一个分析直流同步电机启动电流的案例及其数据,数据格式在zzce.m中。(local decompostion is similar to EMD and LMD)
lld
- lcd编程代码 lcd局部特征尺度分解局部特征尺度分解(LCD programming code)
LCD-1
- 局部特征尺度分解一种信号处理方法,LCD通过三次样条插值获得光滑的内禀尺度分量(Intrinsic scale component,简称ISC),从本质上解决了ITD分解结果出现毛刺的现象。(Local feature scale decomposition program)