搜索资源列表
Iris
- 模式识别,对iris数据进行分类,svm算法
iris data analysis
- 经典的人工智能问题 - iris数据分析问题。通过设计三层bp神经网络对花朵数据进行分类识别,并达到了很好的效果。-classic AI problem- iris data analysis problems. Three-bp through the design of neural networks classify data flower identification, and to achieve good results.
iriscloud
- 云分类器,一种基于云模型理论的分类程序。程序中使用云分类器对Iris数据集进行了测试-cloud classifier, a theoretical model based on cloud classification procedure. Procedures used for cloud classification of Iris data set for testing
Iris Detection
- 生物特征识别,利用对虹膜进行分析进行身份识别验证-Biometrics, the use of the analysis of the iris identification test
moshishibie12345
- 模式识别,isodata 算法,对iris数据进行分类-pattern recognition, isodata algorithm, the iris data classification
isodata_iris
- 聚类分析isodata算法的C程序,实现对iris数据集分类的功能-ISODATA cluster analysis algorithm C procedures, to achieve the classification of iris data set features
Iris
- 模式识别,对iris数据进行分类,svm算法-Pattern recognition, classification of iris data, svm algorithm
GA_FCM
- 基于遗产算法的FCM算法,且对iris标准数据集聚类,适用初学者。-Algorithm based on the heritage of the FCM algorithm, and clustering of the iris standard data categories, the application of beginners.
cluster
- 对iris数据进行聚类分析的java源程序-Iris data of cluster analysis of java source code
IRIS
- 基于BP神经网络,根据鸢尾花多组数据先训练网络再对样本进行测试,给出分类结果-Based on BP neural network, in accordance with multiple sets of data iris network before training again for testing classification results are given
Bayes_xiugai
- 设计一种BAYSE 分类器完成对IRIS 数据库的分类-Bayes classifier for iris database
ClassifierforIRISdata
- 用于对IRIS数据进行分类的各种分类器,用于对多维采样点进行无监督分类。可根据类别数修改分类器,模式识别作业的部分代码。-IRIS data for the various classification categories, for sampling points on the multi-dimensional non-supervised classification. Can be modified in accordance
bp-assort
- 应用bp算法实现对iris数据库的分类,iris数据库是人们广泛使用的用于模式分类的实例系统。它含有150个例子,分为三类,每个类由四个实数特征值描述,分别表示萼片(sepal )长度,萼片宽度,花瓣(petal )长度,花瓣宽度。问题是根据这四个特性值分类三种iris 植物,输入为四个特征值和类别 (5.1 3.5 1.4 0.2 0),输出算法分类结果 -Bp algorithms applied to the iris datab
iris
- 对虹膜图像计算灰度直方图. value = image1_imagedata[j * image1_widthstep + i]
Bayes-Iris
- 根据贝叶斯原理设计的一个简单的分类器,利用已知样本数据训练后,分类器就可以对未知样本进行分类。(实验时采用的是Iris数据集。)-According to the design of a simple Bayesian classifier, using the known training sample data, the classifier can classify the unknown samples. (Experiment
iris_bayes
- 对一组iris数据进行分类的贝叶斯算法,并用留一法计算正确率-Iris on a Bayesian algorithm to classify the data, and calculated using leave-one accuracy
BP-Iris-classifier
- 使用BP网络实现了对Iris数据的分类,使用了可变学习速率和带动量的梯度下降算法。-Using the BP network realizes the classification of Iris data, the use of the variable learning rate and the amount of gradient descent algorithm driven.
Density_Estimation
- 分别采用GMM和KDE对Iris数据集进行密度建模,并进行对比。通过EM算法来确定GMM参数,通过交叉验证来确定K值-GMM and KDE respectively Iris data set of density modeling, and compared. GMM by EM algorithm to determine the parameters of K determined by the value of cross-v
PCA
- 模式识别作业-完全自编仿真程序。先用PCA对IRIS数据集进行降维,然后用最小错误法对降维的数据进行分类。压缩包中既包括matlab源代码,又有自己写的报告,还有.MAT格式的IRIS数据集用作程序调用。程序有详细注释,很容易懂。最后结果输出到txt文件中。-Pattern recognition operations- completely self simulation program. First on the IRIS data
S_SVM
- 在matlab平台上使用SVM对iris数据集进行分类(use SVM Classification of Iris data set in matlab)