搜索资源列表
c4.5
- 数据挖掘算法中,有关决策树算法c4.5的实现,c4.5是在ID3基础上实现的,有这比id3还好的功能
id3matlab
- Id3是最基础的决策树分类方法,是其他决策树分类方法的基础,这个是Id3分类方法的matlab 实现
《数据挖掘技术》-谭建豪-电子教案
- 本资源是《数据挖掘技术》一书的电子教案,作者为谭健豪。本书是一本优秀的数据挖掘教材,全面而系统地介绍了数据挖掘酌商业环境、数据挖掘技术及其在商业环境中的应用。 全书共18章,内容涵盖核心的数据挖掘技术,包括:决策树、神经网络、协同过滤、关联规则、链接分析、聚类和生存分析等。此外,还提供了数据挖掘最佳实践的概观、数据挖掘的最新进展和一些极具挑战性的研究课题,极具技术深度与广度。通过学习本书,读者不仅可以精通数据挖掘的整体结构和核心技术,
c4.5
- 数据挖掘算法中,有关决策树算法c4.5的实现,c4.5是在ID3基础上实现的,有这比id3还好的功能-Data mining algorithms, the decision tree algorithm c4.5 realization, c4.5 is based on ID3, with this function better than id3
id3matlab
- Id3是最基础的决策树分类方法,是其他决策树分类方法的基础,这个是Id3分类方法的matlab 实现-Id3 is the most basic decision tree classification method, other methods of decision tree classification, this classification method is id3 realize the matlab
DecisionTree
- C++编写的C4.5决策树程序,为数据挖掘基础算法。 网址为:http://www.cnblogs.com/michaelGD/archive/2012/11/14/2770758.html-C++ written C4.5 decision tree program, the foundation for the data mining algorithms. Site at: http://www.cnblogs.com/mic
Decision-Tree
- 决策树是数据挖掘分类算法的一个重要方法。在各种分类算法中,决策树是最直观的一种。决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率。-A decision tree is an important method of data mining classification algorithms. In various classification algorithms,
rough-set-codes
- 这是天津大学胡清华老师在粗糙集邻域领域做的最经典的源码,同学们可以在此基础上学习和修改,入口程序已经写好,需要其他方法可以自己添加,MAIN.m是入口程序,参数的意思在子函数里讲的很明白,调用了featureselect_FW_fast.m用来属性约简,几个clsf_dpd文件是使用不同的距离公式来计算属性重要度,选择得到属性结果,使用crossvalidate.m十折交叉算法来计算计算算法精度,该段代码调用了几个分类器,C4_5.m是
RandomForest
- 随机森林是由多棵树组成的分类或回归方法。主要思想来源于Bagging算法,Bagging技术思想主要是给定一弱分类器及训练集,让该学习算法训练多轮,每轮的训练集由原始训练集中有放回的随机抽取,大小一般跟原始训练集相当,这样依次训练多个弱分类器,最终的分类由这些弱分类器组合,对于分类问题一般采用多数投票法,对于回归问题一般采用简单平均法。随机森林在bagging的基础上,每个弱分类器都是决策树,决策树的生成过程中中,在属性的选择上增加了依
decision-tree
- 决策树是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法。代码通过汽车性能案例分别建立决策树和回归树进行预测。-Decision tree is based on the known probability of occurrence of various situations, through the decision tree to obtain the e
decision tree
- 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。本代码提供生成决策树的算法。(A decision tree is a decision support tool that uses a tree-like graph or model of decisions and their poss
决策树
- 决 策 树 模 型决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。(The decision tree (Decision Tree) is the basis of probability in the known situations, through the form
决策树代码
- 基础决策树算法适合初学者第一次尝试r编程(simple decision tree)
神经网络入门13课源码
- 神经网络入门13课源码 第一课 MATLAB入门基础 第二课 MATLAB进阶与提高 第三课 BP神经网络 第四课 RBF、GRNN和PNN神经网络 第五课 竞争神经网络与SOM神经网络 第六课 支持向量机( Support Vector Machine, SVM ) 第七课 极限学习机( Extreme Learning Machine, ELM ) 第八课 决策树与随机森林 第九课 遗传算法( Genetic Al