搜索资源列表
chapter13
- 《数字图像处理与机器视觉:Visual C++与Matlab实现》6 支持向量机,综合案例——基于PCA和SVM的人脸识别系统-" Digital image processing and machine vision: Visual C++ and Matlab to achieve" 6 support vector machines, comprehensive case- based on PCA and
PCA_ORL
- 基于PCA和SVM的人脸识别系统的实现,实验数据采用ORL人脸库。-Based on the PCA and the SVM face recognition system is realized, the experiment data using ORL face database.
new_pca_svm
- 基于PCA和SVM的人脸识别系统主程序 -Based on PCA and SVM for face recognition system main
FaceRec
- 基于PCA和SVM的人脸识别系统的matlab程序-Chaos-based image encryption and decryption process
face-recognition-system
- 基于PCA和SVM的人脸识别系统,该系统为Matlab源代码编程,利用PCA(主成分分析)和SVM(支持向量机)方法进行训练、识别和测试,人脸识别率为91 。-Based on the PCA and SVM of the face recognition system
PCAaSVM
- 基于pca和svm的人脸识别系统。gui图形交互界面的简单应用。-A face recognition system based on pca and SVM.The simple application of GUI graphical interface.
FaceRec_facerecognition
- 基于SVM和PCA的人脸识别算法,有GUI界面,程序运行良好。-Based on SVM and PCA face recognition algorithm, GUI interface, the program works well.
PCA-SVM
- 基于PCA和SVM的人脸识别程序,matlab, ORL库-face recognition code Based on PCA and SVM , matlab, ORL face library
faceRecognition
- 基于SVM和PCA的人脸识别,使用了ORL人脸数据集和libsvm.jar-Face recognition based on SVM and PCA. ORL faces dataset and libsvm.jar are used
All-Files
- 用MATLAB实现基于主成分分析(PCA)和支持向量机(SVM)的人脸识别系统,打开运行FR_GUI函数即可,我放在E盘中的,注意一下路径,当前识别率一般,也欢迎交流指正1127851044@qq.com,谢谢。-Using MATLAB analysis (PCA) based on principal component analysis and support vector machine (SVM) face recogniti
FaceRec
- 分别用基于PCA+SVM和PCA+Adaboost 两种算法进行对200张人脸图片进行识别。(200 face images are identified by two algorithms based on PCA+SVM and PCA+Adaboost.)
PCA+SVM
- 采用经典的ORL人脸数据集,利用PCA进行进行降维,然后用SVM进行数据集的分类和训练。上传文件内包含libSVM3.2安装包(The classical ORL face dataset is used for dimension reduction by PCA, and then SVM is used to classify and train the dataset.)
贝叶斯人脸识别
- Pattern-Recognition-and-Machine-Learning-master,项目包括使用贝叶斯分类器的字符识别,基于GMM的图像分割,使用PCA的人脸识别和具有径向基函数的多类SVM分类器(Pattern-Recognition-and-Machine-Learning-master)
基于PCA和SVM的人脸识别系统
- 先通过图像处理提取人脸的各个特征,然后对人脸通过PCA进行降维,然后通过SVM进行人脸识别(Firstly, the features of human face are extracted by image processing, then the dimension of human face is reduced by PCA, and then the face is recognized by SVM)