搜索资源列表
demo
- 增值税发票抵扣联字符识别中的图像倾斜校正方法,很有用
实现增值税发票抵扣联字符识别中的图像倾斜校正
- 利用VC++ 6.0实现增值税发票抵扣联字符识别中的图像倾斜校正-VC 6.0 VAT invoices deduction copy Character Recognition Image tilt correction
实现增值税发票抵扣联字符识别中的图像倾斜校正
- 利用VC++ 6.0实现增值税发票抵扣联字符识别中的图像倾斜校正-VC 6.0 VAT invoices deduction copy Character Recognition Image tilt correction
DigitRec
- 数字识别系统源代码: 第一步:训练网络。使用训练样本进行训练 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90%。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。
digital-recognise
- 数字识别代码 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别)第二步:识别。 首先,打开图像(256色) 再次,进行归一化处理。点击“一次性处理” 最后,点击“R”或者使用菜单找到相应项来进行识别识别的结果显示在屏幕上,同时也输出到文件result.txt中 该系统的识别率一般为90% 另外,也可以单独对打开的图片一步一步进行图像预处理工作。但要注意,每一
szsbxtydm
- 数字识别系统源代码.rar 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别) 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90%。 此外
DigitRec
- 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别) 第二步:识别。 首先,打开图像(256色) 再次,进行归一化处理。点击“一次性处理” 最后,点击“R”或者使用菜单找到相应项来进行识别 识别的结果显示在屏幕上,同时也输出到文件result.txt中 该系统的识别率一般为90% 另外,也可以单独对打开的图片一步一
AutomaticLicenseplateIdentificationSystemDesignand
- 本文基于对车牌自动分识别系统中牌照图像预处理、字符分割和字符识别等关键技术的研究。采用改进的BP神经网络模式识别技术,以车牌字符作为识别对象,设计实现了一个自动识别系统。-Based on the automatic license plate recognition system license image preprocessing, character segmentation and character recognition
demo
- 增值税发票抵扣联字符识别中的图像倾斜校正方法,很有用-VAT invoice deduction joint character recognition Image tilt correction method, very useful
c02
- [demo.rar] - 增值税发票抵扣联字符识别中的图像倾斜校正方法,很有用 [2007012218032016052.rar] - 目前紧紧支持24种验证码的识别,后续版本将会慢慢加入更多可识别的格式。 [OCR.rar] - OCR光学字符识别代码,思想是背景16值变化,提供勾,圈,叉识别 [javawllt.rar] - 用JAVA编译的局域网聊天程序 v 1.0 ,此聊天程序为学习java语言而开发
digital
- 用VC++实现印刷体数字的自动识别,首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90 。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。 具体步骤为:“256色位图转为灰度图”-“灰度图
DigitalRecognitioncode
- 使用说明第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别) 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90 。 此外,也可以单独对打开的图片一步一步进行图像预
DigitRec
- 使用说明 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别) 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90 。 此外,也可以单独
SkewDetectionAndCorrectionMethod
- 文本图像在扫描输入时产生的倾斜现象会对后续的页面分割及光学字符识别(OCR)处理产生很大的影响,而传统的标准Hough变换虽然具有对噪声不敏感,不依赖于直线连续性的优点,但由于计算量偏大,速度慢,在实用时有较大的局限性.提出一种基于改进的Hough变换的文本图像倾斜校正方法,通过在变分辨率图像中采用不同的文本方向提取算法,及选择合理投票门限等改进Hough变换的措施,减小了由图像区域及文字笔画粗细所产生的对倾角判定的不利影响,并使用基于
CorrectCarNoImageAndRegnize
- 一种车牌图像校正新方法 【摘要】因摄像机角度而造成的机动车牌图像倾斜会对其后继的字符分割与识别带来不利的影响。本文在分析了车牌倾斜模式的基础上,提出了一种基于最小二乘支持向量机(LS-SVM)的车牌图像倾斜校正新方法。通过LS-SVM线性回归算法求取坐标变换矩阵并对畸变图像进行旋转校正。主要方法:首先,将二值倾斜车牌图像中的像素转换为二维坐标样本,并构造图像数据集 再通过LS-SVM线性回归算法对该数据集进行回归,求取主要参数 最后
plate-tilt-correction
- 车牌倾斜校正程序,将车牌边界与图像边界不平行的图像进行旋转,使其平行,可用于车牌识别。-Plate tilt correction procedure, the plate boundary is not parallel with the image border to rotate the image, a parallel can be used for license plate recognition.
car
- 汽车车牌的图像识别。 根据车牌凸角轮廓特征,采用MPP算法进行车牌倾斜校正;采用彩色图像分割方法,最大限度的去除图像噪声干扰;设计了基于神经网络的多种彩色背景车牌字符识别方法,取得了良好的效果。-Image recognition of vehicle license plates. According to plate convex contour feature, the use of MPP plate tilt correcti
图像倾斜矫正以及识别
- 对工业指针式仪表的倾斜图像进行自动矫正以及读数识别(Automatic correction of slant images and readout recognition)
神经网络 训练识别
- 1.先打开一幅图片然后按照顺序灰度化、二值化、灰度拉伸、车牌定位、二值化、倾斜校正、字符分割、训练神经网络、识别字符。 2.测试图像存储在当前目录的img下。 3.测试集、训练集、目标向量均存储在img下的文本文件中。(1. First open a picture and then follow the sequence of grayscale, binary, grayscale stretching, license plate
14_车牌识别系统
- 1.首先单击载入图像菜单项(载入车辆图像),图像在images文件夹下面。 2.然后单击车牌定位与识别单项,依次进行车牌提取、倾斜校正、字符分割、字符识别。 注:本程序使用的是OpenCV2.1版本(First click the load image menu item(load the vehicle image), which is under the images folder. 2. The license plate