搜索资源列表
用四阶龙格-库塔法解求解微分方程初值问题
- 典型的数值分析程序,用四阶龙格-库塔法求解微分方程初值问题-typical numerical analysis procedures, with four bands Runge - Kutta method to solve initial value problems
四阶龙格库塔法解一阶二元微分方程
- 四阶龙格库塔法解一阶二元微分方程 //dxi/dt=c*(xi-xi^3/3+yi)+K*(X-xi)+c*zi //dyi/dt=(xi-b*yi+a)/c //i=1,2,3 //X=sum(xi)/N
龙格--库塔法
- 龙格-库塔法是工程中常用的求解微分方程的一种方法.而且具有四阶精度,因此应用很广泛.改程序给出了其源代码.-Runge- Kutta method is commonly used in engineering solving a differential equation methods. But with four bands precision, it is widely used. Changed its procedures
用四阶龙格-库塔法解求解微分方程初值问题
- 典型的数值分析程序,用四阶龙格-库塔法求解微分方程初值问题-typical numerical analysis procedures, with four bands Runge- Kutta method to solve initial value problems
n-s
- 四阶龙格库塔法求解流体力学-- 关于N-S方程的串行求解源程序-four bands Runge Kutta method hydrodynamics-- on the Navier-Stokes equations to solve the serial source
vbC12
- 用VB实现解常微分方程组 包括定步长四阶龙格-库塔法、自适应变步长的龙格-库塔法、改进的中点法、外推法等-VB solution of ordinary differential equations including fixed step 4-order Runge- Kutta method, adaptive variable step of the Runge- Kutta method to improve the mid
蝴蝶效应与混沌解
- 这是一个数值计算程序,主要是用四阶龙格库塔法求解-This is a numerical procedure is mainly used four bands Runge Kutta method
solution-of-Differential-equation-group
- 提供了4种解常微分方程组的c++代码:定步长四阶龙格-库塔(Runge-Kutta)法(RK4->RKDUMP); 自适应变步长的龙格-库塔(Runge-Kutta)法(RKQC->ODEINT); 改进的中点法(MMID); 外推法(BSSTEP(RZEXTR(有理函数), PZEXTR(多项式));-provide four kinds of solutions of ordinary differential equa
shuzhijifeng
- 数值积分方法类型Model,1=欧拉法,2=二阶龙格库塔,4=四阶龙格库塔-numerical integration methods Model type, a = Euler, 2 = second-order Runge- Kutta, 4 = 4-order Runge- Kutta
rossler
- 用来计算rossler吸引子的程序,运用四阶龙格库塔法非常实用,-used to calculate rossler attractor procedures, using four-Runge- Kutta method is very practical.
ODE4
- Matlab中的四阶龙格库塔法m文件。 -Matlab in the fourth-order Runge-Kutta method m file.
GRKT10
- 通过C语言,实现龙格库塔法,用四阶龙格库塔法求解一阶微分方程组。-Through the C language, the realization of Runge-Kutta method with fourth-order Runge-Kutta method for solving first-order differential equations.
lgkt
- 用四阶龙格-库塔法求解微分方程初值问题 按照时间输出-Using fourth-order Runge- Kutta method for solving differential equations initial value problem based on real-time output
pengtaiyu2
- 四阶龙格库塔法,大学MALAB实践课程 需要的请下载-Fourth-order Runge-Kutta method, the University needs MALAB practical courses please download
ode4
- 经常看到很多朋友问定步长的龙格库塔法设置问题,下面吧定步长四阶龙格库塔程序贴出来,有需要的可以看看 -Often see many of my friends ask determining step Runge-Kutta method set problem, the following step you set the fourth-order Runge-Kutta procedures paste out, there i
danbai
- 本程序以自然界最平常的单摆现象为案例,利用计算机仿真中的典型四阶龙格-库塔法进行仿真,通过C语言的图形显示功能函数加以显示,实现C语言教学、计算机仿真教学与大学物理运动学知识的有机结合,理解简单应用系统的构思方法和实现方法。-Nature of this procedure to the most ordinary pendulum phenomenon as a case, the use of computer simulation
vsrk4
- 龙格-库塔(Runge-Kutta)法是一种不同的处理,作为多级方法为人们所知。 它要求对于一个简单的校正计算多个 f 的值。 这里是变步长四阶龙格库塔法的c程序-Runge- Kutta [Runge-Kutta] method is a different treatment, as a multi-stage method for people to know. It requires a simple corr
四阶龙格库塔法程序——_FORTRAN语言编写
- 关于Runge-Kutta方法,该方法是用来解形如y'=f(t,y)的常微分方程的经典的4阶R-K方法,用fortran语言编写(With respect to the Runge-Kutta method, the method is used to solve the classical 4 order R-K method of ordinary differential equations such as y'=f (T, y)
四阶龙格库塔法解数值微分
- 程序主要实现了四阶龙哥库塔,程序注释很详细(The fourth-order Longkouta is mainly realized, and the program annotations are very detailed.)
四阶龙格-库塔法
- 利用四阶龙格库塔求解微分方程,并给出方程实例。(The fourth order Runge Kutta is used to solve the differential equation and an example is given.)