搜索资源列表
chazhi
- Language 求已知数据点的拉格朗日插值多项式 Atken 求已知数据点的艾特肯插值多项式 Newton 求已知数据点的均差形式的牛顿插值多项式 Newtonforward 求已知数据点的前向牛顿差分插值多项式 Newtonback 求已知数据点的后向牛顿差分插值多项式 Gauss 求已知数据点的高斯插值多项式 Hermite 求已知数据点的埃尔米特插值多项式 SubHermite 求已知数据点的分段
HEAT_EQUATION_BACKWARD-DIFFERENCE_ALGORITHM
- 本程序提供一种求解热传导方程的有限差分法:向后差分法-This program provides a heat conduction equation for solving the finite difference method: backward difference method
assemble_backward_euler
- 采用数值差分方法中的向后差分计算高等传热问题的欧拉方程-ASSEMBLE_BACKWARD_EULER adjusts the system for the backward Euler term.
4
- 插值的函数 函数名 功能 Language 求已知数据点的拉格朗日插值多项式 Atken 求已知数据点的艾特肯插值多项式 Newton 求已知数据点的均差形式的牛顿插值多项式 Newtonforward 求已知数据点的前向牛顿差分插值多项式 Newtonback 求已知数据点的后向牛顿差分插值多项式 Gauss 求已知数据点的高斯插值多项式 Hermite 求已知数据点的埃尔米特插值多项式 Sub
changweifenfangcheng
- 在matlab中,求解插值运算问题,求已知数据点的拉格朗日插值多项式 求已知数据点的艾特肯插值多项式 求已知数据点的均差形式的牛顿插值多项式 求已知数据点的前向牛顿差分插值多项式 求已知数据点的后向牛顿差分插值多项式 求已知数据点的高斯插值多项式 求已知数据点的埃尔米特插值多项式 求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值 求已知数据点的二次样条插值多项式及其插值点处的值 求已知数据点的
heat-conduction-equation
- 偏微分方程热传导方程MATLAB求解,分别用了向前差分,向后差分,六点差分和Richardson差分进行求解-MATLAB PDE heat equation solving, respectively, with a forward difference, backward difference, six for solving differential and differential Richardson
Heat-Conduction
- 一维定长热传导方程,时间项采用向后差分,隐式求解。-One dimensional heat conduction equation of time length, using backward difference, implicit solution.
Euler-backward-difference-scheme
- 欧拉向后差分格式的程序文件,可直接调用,在科学计算中有很重要的应用.-Euler backward difference scheme of program files can be called directly,which have important applications in scientific computing.
botda
- 基于MATLAB受激布里渊散射耦合方程求解,泵浦光向后差分,斯托克斯光向前差分。-Based on MATLAB stimulated Brillouin scattering coupled equations, differential pumping light backwards, Stokes forward difference.
DM
- 对流扩散方程的四种差分解法,向前差分,向后差分,Crank-Nicolson格式和Du Fort-Frankel格式-Four Finite Difference Method convection-diffusion equation, the forward difference, backward difference, Crank-Nicolson scheme and Du Fort-Frankel format
DE
- 最简单的差分格式有向前、向后和中心3种。 向前差分:f (n)=f(n+1)-f(n) 向后差分:f (n)=f(n)-f(n-1) 中心差分:f (n)=[f(n+1)-f(n-1)]/2-The easiest difference format forward, backward, and three kinds of centers. Forward differencing: f (n) = f (n+
MATLAB
- 隐式向后差分离散一维热传导偏微分方程,给定相应的边界条件和初始条件即可求解-Implicit backward difference discrete one-dimensional heat conduction differential equation, given the appropriate boundary and initial conditions can be solved
yiweipaowuxingfangchengqiujie
- 对一维抛物型方程采用对时间向后差分,对空间中心差分的方法计算热传导方程初边值问题。-In this paper, the initial boundary value problem of heat conduction equation is solved by using the method of difference of time and the difference of space center.
计算流体力学1
- 利用向后差分法求解t=2.5时刻的变化曲线(The change curve of t=2.5 moment is calculated by back difference method)
CFD2
- MATLAB程序,使用向后差分方法模拟一维非稳态导热(Simulation of one dimensional unsteady state heat conduction)
eg2
- 波动方程离散化后中心差分与向前、向后差分精度的比较(Comparison of difference accuracy between center difference and forward and backward)
抛物型偏微分方程的有限差分法
- 抛物型偏微分方程的有限差分法中的向前差分显格式和向后差分隐格式。(The forward difference explicit scheme and backward difference implicit scheme in the finite difference method for parabolic partial differential equations.)
差分法
- 实现向后差分法 ,求离散型数据的极值,递增大于零,递减小于零(The realization of the extreme value by the difference method)
向前后差分格式
- 向前差分格式 向后差分格式 matla 程序(Forward difference scheme Backward difference scheme)
抛物线方程的差分格式
- 抛物线方程的几种常见差分格式matlab代码,包括向前欧拉,向后欧拉,Crank-Nicolson和Du-For-Frankel(Several common difference schemes for parabolic equations are matlab codes, including forward Euler, backward Euler, Crank-Nicolson and Du-For-Frankel.)