搜索资源列表
inviscid_eqution
- 求解粘性Burger方程和非粘性Burger方程的各种差分格式,包括BTCS格式的显式计算 BTCS格式的隐式计算 滞后非线性项 向前时间步长线性化 牛顿迭代法线性化 Lax-Wendroff格式 通量分裂格式显试计算 通量分裂格式隐式计算 CN格式隐式计算 等格式。-Solution of viscous Burger equation and non-viscous Burger differe
parabola
- 求解抛物线方程的显式法,编译example_01生成可执行文件,输入example_01 inp.txt.边界条件的中心差分离散,编译example_02a.f,输入example_02ainp.txt.边界条件的向前差分离散example_02b.f,输入example_02binp.txt.-Explicit solving parabolic equation method, the compiler generates an e
ex3.1.1p
- 孙志忠书:偏微分方程数值解,第三章第一节:抛物方程的有限差分解法向前欧拉格式-forward euler difference scheme for parabolic problem
Show-format
- 用向前差分格式求解抛物型微分方程,在程序中更改待求方程即可- Solving parabolic differential equation with forward difference scheme
curveture
- 用向前差分 中心差分计算矩阵的曲率,可对图像操作,挺好用的-Matrix of curvature of the forward differential center differential, image manipulation, very good use
Untitled-
- 偏微分方程中关于有限差分的其中一个格式,向前差分格式-failed to translate
FDM-for-differential-equation
- 有限差分格式的子程序以及用牛顿向前迭代的子程序-Finite difference scheme and Newton subroutine subprogram forward iteration
FDM_xiangqian
- 偏微分方程抛物型向前差分格式的C++程序-Parabolic partial differential equations forward differencing format C++ program
realhua
- 应用FORTRAN计算向前差分法步长是否收敛小程序-Application FORTRAN calculation step forward difference method is convergent applet
newtonxq
- 数值计算中的牛顿向前差分公式,用C++实现。可自定义个数。-Numerical Newton forward difference equation with C++ achieved. The number can be self-defined.
heat-conduction-equation
- 偏微分方程热传导方程MATLAB求解,分别用了向前差分,向后差分,六点差分和Richardson差分进行求解-MATLAB PDE heat equation solving, respectively, with a forward difference, backward difference, six for solving differential and differential Richardson
paowuxingEF_Euler
- 本代码主要讲述了抛物型偏微分方程的向前Euler格式的差分解法。代码简单,高效。-This code mainly tells the story of parabolic partial differential equations of Euler forward format of finite difference method. The code is simple, efficient.
botda
- 基于MATLAB受激布里渊散射耦合方程求解,泵浦光向后差分,斯托克斯光向前差分。-Based on MATLAB stimulated Brillouin scattering coupled equations, differential pumping light backwards, Stokes forward difference.
DM
- 对流扩散方程的四种差分解法,向前差分,向后差分,Crank-Nicolson格式和Du Fort-Frankel格式-Four Finite Difference Method convection-diffusion equation, the forward difference, backward difference, Crank-Nicolson scheme and Du Fort-Frankel format
DE
- 最简单的差分格式有向前、向后和中心3种。 向前差分:f (n)=f(n+1)-f(n) 向后差分:f (n)=f(n)-f(n-1) 中心差分:f (n)=[f(n+1)-f(n-1)]/2-The easiest difference format forward, backward, and three kinds of centers. Forward differencing: f (n) = f (n+
Ex4
- 向前差分法求解一维水平方向Richard方程,同时可以画出累计入渗量,入深速率和土壤水分动态-moisture diffusion
抛物型偏微分方程的有限差分法
- 抛物型偏微分方程的有限差分法中的向前差分显格式和向后差分隐格式。(The forward difference explicit scheme and backward difference implicit scheme in the finite difference method for parabolic partial differential equations.)
向前后差分格式
- 向前差分格式 向后差分格式 matla 程序(Forward difference scheme Backward difference scheme)
抛物线方程的差分格式
- 抛物线方程的几种常见差分格式matlab代码,包括向前欧拉,向后欧拉,Crank-Nicolson和Du-For-Frankel(Several common difference schemes for parabolic equations are matlab codes, including forward Euler, backward Euler, Crank-Nicolson and Du-For-Frankel.)
convection-diffusion2
- 对流扩散方程有限差分求解,空间离散采用迎风格式,时间离散采用向前差分格式(显示格式)(Finite difference solution of convection-diffusion equation)