搜索资源列表
periodogram
- 本程序是功率谱密度的仿真比较,关于三个信号源的具体情况参见《现代数字信号处理导论》上册,P202,习题5。 实验方法:周期图法、自相关法和协方差法。 -this procedure is the power spectral density of the simulation, 3 signal source on the specific circumstances, see the "modern digital
puguji
- 谱估计 (1)修正协方差法 (2)多重信号分类(MUSIC)算法 (3)ESPRIT算法 (4)皮萨论科(Pisarenko)谐波分解法 并对各算法进行分析。 解压后即可在MATLAB上运行-spectral estimation (1) the amendment of covariance (2) multiple signal classification (MUSIC) algorithm (3) ESP
adsp3
- AR随机过程的建模,给定一个AR过程,对其进行建模,分别利用Yule-Walker方程和协方差法进行功率谱估计-AR random process modeling, given an AR process, its modeling, respectively, Yule-Walker equations and covariance method of power spectrum estimation
Powe_Spectrum_Estimation_based_on_AR_model
- 基于AR模型的现代谱估计,分别实现自相关法,协方差法,Burg法,对比分析性能,及与经典谱估计的比较
ar
- 含有噪声的余弦序列,分别采用周‘期图法’与‘改进协方差法’估计序的功率谱
periodogram
- 本程序是功率谱密度的仿真比较,关于三个信号源的具体情况参见《现代数字信号处理导论》上册,P202,习题5。 实验方法:周期图法、自相关法和协方差法。 -this procedure is the power spectral density of the simulation, 3 signal source on the specific circumstances, see the "modern digital
puguji
- 谱估计 (1)修正协方差法 (2)多重信号分类(MUSIC)算法 (3)ESPRIT算法 (4)皮萨论科(Pisarenko)谐波分解法 并对各算法进行分析。 解压后即可在MATLAB上运行-spectral estimation (1) the amendment of covariance (2) multiple signal classification (MUSIC) algorithm (3) ESP
adsp3
- AR随机过程的建模,给定一个AR过程,对其进行建模,分别利用Yule-Walker方程和协方差法进行功率谱估计-AR random process modeling, given an AR process, its modeling, respectively, Yule-Walker equations and covariance method of power spectrum estimation
Powe_Spectrum_Estimation_based_on_AR_model
- 基于AR模型的现代谱估计,分别实现自相关法,协方差法,Burg法,对比分析性能,及与经典谱估计的比较-AR model based on modern spectral estimation, respectively, to achieve auto-correlation method, covariance method, Burg method, comparative analysis of performance, and
ar
- 含有噪声的余弦序列,分别采用周‘期图法’与‘改进协方差法’估计序的功率谱-Contain noise cosine sequence, were used weeks period diagram with the improved covariance method estimates the power spectral sequence
ULA
- 已知:信号中心波长为2,天线阵元的间距为1米,快拍数为2000,空中有四个 源信号,假设它们的频率 四个源信号的方向分别为: 求: 1)在不加入噪声的情况下,观察并计算协方差矩阵特征值,并对它的特点 加以说明 2)分别采用MUSIC算法,CAPON算法, ESPRIT算法在下面四种情况下,对 上述四个信号源的波达方向进行估计,并画出它们的空间谱图; ①在不加入噪声的情况下, ②在加入高斯白
p_morden
- 用Matlab实现现代功率谱估计,主要有Levinson法,Burg法,协方差法及修正协方差法,四种方法的结果放到一起进行比较,有详细的注释-Using Matlab implementation of modern power spectrum estimation, the main has Levinson Law, Burg method covariance method covariance method, and the
chap08
- ex6_1 ~ ex6_3二项分布的随机数据的产生 ex6_4 ~ ex6_6通用函数计算概率密度函数值 ex6_7 ~ ex6_20常见分布的密度函数 ex6_21 ~ ex6_33随机变量的数字特征 ex6_34 采用periodogram函数来计算功率谱 ex6_35 利用FFT直接法计算上面噪声信号的功率谱 ex6_36 利用间接法重新计算上例中噪声信号的功率谱 ex6_37 采用tfe函数来进行系统
ARxzxfc
- AR模型,用修正协方差法求谱估计,简单实用。-AR model, with amendments covariance spectral estimation method, simple and practical.
experiment2
- AR过程的线性建模与功率谱估计 Yule-Walker法(自相关法) 协方差法;(2) Burg方法;(3) 修正协方差法 -The linear AR process modeling and Yule-Walker power spectrum estimation method (autocorrelation method) covariance method (2) Burg method (3) modified cov
weifenwaitui
- 在VC环境下,演示了协方差法的模型外推算法,测试函数为: f(x)=sin(x)*sqrt(x+1)。 最后输出结果对比 -In the VC environment, demonstrate the model covariance method extrapolation method, the test function: f (x) = sin (x)* sqrt (x+1). The comparison of the f
3
- 用卡尔曼滤波法,虽然刚开始的初始高度协方差很大为100,但通过2步之后减小到不超过1,逐渐接近于0-Kalman filtering method, although the beginning of the initial height of 100 covariance great, but by following the two-step reduced to no more than 1, and gradually clos
burg
- 全极点建模的Burg算法; 产生卷积矩阵; 产生协方差矩阵; 全极点建模的协方差法; MA过程的Durbin法。-All-pole modeling of the Burg algorithm generate convolution matrix generated covariance matrix all-pole modeling of the covariance method MA process,
S
- 实现功率谱估计的函数: Arburg:用Burg算法估计AR模型的参数; Arcov: 用协方差法估计AR模型的参数; Armcov:用改进的协方差法估计AR模型的参数; Aryule:用Yule_Walker算法估计AR模型的参数; -To achieve a function of power spectrum estimation: Arburg: AR with Burg algorithm to esti
PSDestimation
- 此程序使用协方差法和修正协方差法进行功率谱估计。(This two programs use covariance method and modified covariance method for power spectrum estimation.)