搜索资源列表
BPgaijin
- 采用动量梯度下降算法训练BP网络,有需要的下哦~-using gradient descent algorithm BP training network, it is necessary to the next, oh ~
BPnet
- 采用动量梯度下降算法训练 BP 网络。
动量梯度下降算法和贝叶斯正则化算法BP神经网络程序实例
- 动量梯度下降算法和贝叶斯正则化算法BP神经网络程序实例,可以直接运行。
bp2
- 基于梯度下降的BP算法,可以调整学习率可动量因子.-based on the gradient descent algorithm BP, the learning rate can be adjusted momentum factor.
BPgaijin
- 采用动量梯度下降算法训练BP网络,有需要的下哦~-using gradient descent algorithm BP training network, it is necessary to the next, oh ~
BPpredict
- 运用比例共轭梯度动量算法来训练BP网络并对机械振动峰峰值进行预测。-use ratio conjugate gradient algorithm to train the momentum BP also peak of mechanical vibration prediction.
BPnet
- 采用动量梯度下降算法训练 BP 网络。 -Gradient descent algorithm using momentum BP network training.
bp.example
- 采用动量梯度下降算法训练BP网络,采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络-Gradient descent algorithm using momentum BP network training, using two training methods, namely, LM optimization algorithm (trainlm) and Bayesi
ANN
- BP神经网络的matlab程序(动量梯度下降算法训练 、贝叶斯正则化算法)-BP neural network matlab program
BP_neural_network
- 采用动量梯度下降算法训练BP网络,程序后面有详细注释-Gradient descent algorithm using momentum BP network training, procedures followed have detailed notes
subb
- 利用动量梯度下降算法训练BP网络,得到误差显示图,并最终进行预测-Gradient descent algorithm using momentum BP network training, the error display map, and, ultimately, to predict
ebp1
- matlab动量梯度下降算法 生成一个新的前向神经网络 对BP神经网络进行训练 对BP神经网络进行仿真-Momentum matlab gradient descent algorithm to generate a new feed-forward neural networks trained BP neural network on the BP neural network simulation
dltd
- 采用动量梯度下降算法训练BP网络。在本源码中,训练样本定如下:p=[-1 -2 3 1 -1 1 5 -3] 目标矢量为t=[-1 -1 1 1]-Gradient descent algorithm using momentum BP network training. In this source, the training sample set as follows: p = [-1-2 3 1 -1 1 5-3] target
BP1
- 采用动量梯度下降算法训练 BP 神经网络预测的一个实例分析-Gradient descent algorithm with momentum training BP neural network analysis of an instance of
BP-NET
- 用动量梯度下降法训练BP网络 已知输入向量为P=[-1,-2,3,1 -1,1,5,3],目标输出为T=[-1,-1,1,1]。 -Gradient descent with momentum BP network training input vector is known as P = [-1,-2,3,1 -1,1,5,3], the target output for the T = [-1,-1,1, 1].
shenjingwangluo
- 神经网络实例 采用动量梯度下降算法训练 BP 网络。-Neural Network Example
258
- 带动量,自适应学习速率的梯度下降法; 刚建立的网络误差 ; 对学习训练后的网络仿真; 误差函数赋值-matlab program
matlab
- 采用动量梯度下降算法训练 BP 网络训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为 t = [-1 -1 1 1]-采用动量梯度下降算法训练 BP 网络训练样本定义如下: 输入矢量为 p =[-1-2 3 1 -1 1 5-3] 目标矢量为 t = [-1-1 1 1]
DLBP
- 一种改进的BP算法,基于动量梯度的,非常经典,实际可用-An improved BP algorithm based on the momentum gradient, very classic, the actual available
TRAINGDM-to-train-BP(code)
- 采用动量梯度下降算法训练 BP 网络。 训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为 t = [-1 -1 1 1]-Use TRAINGDM to train BP network.