搜索资源列表
用四阶龙格-库塔法解求解微分方程初值问题
- 典型的数值分析程序,用四阶龙格-库塔法求解微分方程初值问题-typical numerical analysis procedures, with four bands Runge - Kutta method to solve initial value problems
VC实现常微分方程初值问题求解
- 讲述如何利用VC的编程来求解微分方程的一种思想-VC on how to use the programming to solve a differential equation thinking
常微分方程初值问题的数值解法
- 常微分方程初值问题的数值解法:Euler方法、 Runge-Kutta方法、线性多步法、预测-校*、 等。-Ordinary Differential Problems Numerical Solution : Euler's method, Runge - Kutta method, linear multi-step forecast-correction method, etc.
SOR_迭代
- 重点内容是计算中的误差、函数方程求根、插值呆逼近、数值积分和微分、线性代数方程组解法、常微分方程初值问题的数值解法、数学软件。 -focus on the calculation of the error, solving functional equations, interpolation stayed approximation, numerical integration and differentiation, linea
r_K
- 用四阶(定步长)龙格--库塔法求解初值问题,其中一阶微分方程未y =f(x,y)-with four bands (fixed step) Runge -- Kutta method to solve initial value problems, not an order differential equation y = f (x, y)
eulerpro
- 用改进的欧拉方法求解初值问题,其中一阶微分方程未y =f(x,y)-Improved Euler method to solve initial value problems, not an order differential equation y = f (x, y)
num_analysis
- 用vc实现数值分析中常微分初值问题的数值解法,使用eular和runge_kutta法。-with vc often achieve numerical analysis of the initial differential method. eular and use runge_kutta law.
adms4
- 用Admas四阶预估-校正算法的PECE模式求下列初值问题的数值解,步长h=0.1。-with Adams estimated four bands - correction algorithm PECE following initial model for the numerical solution of the problem, Step-h = 0.1.
eulerany
- Euler方法解 程序,使之适用于任意右端函数f,任意步长h和任意区间[to,T]。用h=1/4,1/8,1/16分别计算初值问题 -Euler method Solutions program, which applies to arbitrary subguadratic function f, arbitrary step h and arbitrary interval [to T]. With h = 1 /
rk
- 用四阶古典RK方法解初值问题: 取h=1/8。每隔8步打印出数值解与真解的值(u(t)=(t^2)/2-t),画出它们的大致图像,并对产生的结果做出解释。 -with four bands classical RK method for initial value problems : from h = 1 / 8. Every eight-step numerical solution print and in the
RGKT3
- 用c语言编程,定步长基尔法求解一阶常微分方程,给定一阶常微分方程的初值问题。-with c programming language, will step Kiel method of first-order differential equations, given an order ordinary differential equation initial value problems.
newoula-C
- * 用改进的欧拉方法求解初值问题,其中一阶微分方程未y =f(x,y) * 初始条件为x=x[0]时,y=y[0]. * 输入: f--函数f(x,y)的指针 * x--自变量离散值数组(其中x[0]为初始条件) * y--对应于自变量离散值的函数值数组(其中y[0]为初始条件) * h--计算步长 * n--步数 * 输出: x为说求解的自变量离散值数组 * y为所求解对应于自变量离散值
wyl_shuzhisuanfa
- 算法包括:1.二分法求解 2.牛顿法求解 3.高斯消去法求解 4.雅可比迭代法求解 5.拉格朗日插值 6.牛顿插值 7.最小二乘法拟合 8.龙贝格方法计算积分 9.欧拉方法求解初值问题-algorithms include : 1. Solving two dichotomy. Newton method 3. Gaussian elimination method 4. Jacobi iterative method 5. Lagra
用四阶龙格-库塔法解求解微分方程初值问题
- 典型的数值分析程序,用四阶龙格-库塔法求解微分方程初值问题-typical numerical analysis procedures, with four bands Runge- Kutta method to solve initial value problems
常微分方程初值问题的数值解法
- 常微分方程初值问题的数值解法:Euler方法、 Runge-Kutta方法、线性多步法、预测-校*、 等。-Ordinary Differential Problems Numerical Solution : Euler's method, Runge- Kutta method, linear multi-step forecast-correction method, etc.
常微分方程的初值问题
- 数值分析常微分初值问题的matlab的范例,超好用der ((Numerical analysis of the Matlab example, super easy to use der))((Numerical analysis of the Matlab example, super easy to use der))
1
- 初值问题的几种数值方法的代码见谱方法原理(some codes of number)
欧拉方法
- 解决初值问题,也就是不能直接跟用解析方法解决的方程,用近似的方法。(Solve the problem of initial value)
常微分方程的初值问题
- 常微分方程初值问题的matlab计算方法代码(The calculation method of initial value problem of ordinary differential equation)
常微分方程初值问题数值解法matlab程序及说明
- 常微分方程初值问题数值解法matlab程序及说明(Numerical solution of initial value problem of ordinary differential equations matlab program and descr iption)