搜索资源列表
triSplit
- 凸多边形最优三角剖分,代码开放,彼此交流
guihuazuiyou
- 算法分析与设计基于动态规划的凸多边形的最优三角剖分设计报告
triSplit
- 凸多边形最优三角剖分,代码开放,彼此交流-Optimal convex polygon triangulation, code open exchange
guihuazuiyou
- 算法分析与设计基于动态规划的凸多边形的最优三角剖分设计报告-Algorithm Analysis and Design Based on Dynamic Programming Optimal convex polygon triangulation design report
cutpoly
- 凸多边形的最优三角剖分的vc++实现。输入:逆时针输入凸多边形P的顶点序列p1,p2…pn. 输出:P的三角剖分序列p1p2pi,p2pipj,…,plpn-1pn及三角剖分后的最优权值之和 -Optimal convex polygon triangulation of vc++ to achieve.
convex-polygon-triangulation
- 给定一系列坐标定点,先判定能否构成凸多边形,然后进行最优三角剖分-Given a series of fixed-point coordinates, first determine whether the composition of convex polygons, then the optimal triangulation
333
- 求凸多边形最优三角剖分。用动态规划问题有效解决该问题。多边形是平面上一条分段线形封闭曲线。-Optimal convex polygon triangulation. Dynamic programming problem with an effective solution to the problem. Sub-polygon is a plane closed curve linear.
凸多边形最优三角形剖分
- 利用: 1. “附件3-1.21个基站凸多边形数据” 2. “附件3-2.29个基站凸多边形数据” 给出21凸多边形顶点数据、 29凸多边形顶点数据,以顶点间的地理距离作为连接2个 顶点的边、弦到的权值,对这2个凸多边形进行最优三角剖分。(Utilization: 1. "Annex 3-1.21 Base Station Convex Polygon Data"