搜索资源列表
C45Rule-PANE
- Descr iption: C4.5Rule-PANE is a rule learning method which could generate accurate and comprehensible symbolic rules, through regarding a neural network ensemble as a pre-process of a rule inducer. Reference: Z.-H. Zh
C45Rule-PANE
- Descr iption: C4.5Rule-PANE is a rule learning method which could generate accurate and comprehensible symbolic rules, through regarding a neural network ensemble as a pre-process of a rule inducer. Reference: Z.-H. Zh
fengefangfa
- 基于一致性直方图的超声乳腺图片分割方法 为了在乳腺超声图像中准确的分割出病灶-Histogram based on the consistency of the breast ultrasound image segmentation method for ultrasound images of breast accurate segmentation of lesions
breast_outline
- 该程序用实现寻找钼靶图像中乳腺轮廓。在医学图像处理当中,找到乳腺轮廓有助于简化后绪处理。-This code is used for finding the boudary of the breast in a mammogram.
Breast
- 乳腺X光片中可疑区域的多分辨率分割的源代码-Breast X-ray film multi-resolution segmentation of suspicious regions
LVRclass21
- LVQ神经网络 分类 实例 乳腺肿瘤 诊断-LVQ neural network classification of instances of breast cancer diagnosis
1232
- 采用对比度受限自适应直方图均衡对乳腺图像进行增强,有效地增强了乳腺图像中的细节,如钙化点、乳导管等组织;并通过对算法中相关参数研究, 得到应用于乳腺图像增强的参数优选值,以求获得较好的增强效果,为医师分析影像提供方便。通过与灰度直方图均衡的结果进行比较得出:对比度受限自适应直方图均衡为乳腺数字图像增强的有效方法, 在计算机辅助乳腺诊断方面有较高应用价值。-By contrast limited adaptive histogram eq
MammographicImagesEnhancementand
- 乳腺癌CT图像增强与预测,应用的是二值小波 国外英文期刊 I-CT image enhancement with the prediction of breast cancer, application of the binary wavelet foreign English journal IEEE
bp
- 神经网络分类在医疗领域乳腺肿瘤诊断中的应用-Neural network classifier in the medical field diagnosis of breast cancer
breast-cancer-diagnosis
- Matlab中LVQ神经网络的分类——乳腺肿瘤诊断-LVQ neural network classification- breast cancer diagnosis
LVQ-ANN-1
- 基于LVQ神经网络的分类的乳腺肿瘤诊断的matlab源程序以及所需数据-LVQ neural network based classification of breast cancer diagnosis matlab source code. . .
Diagnosis-Based-on
- 本文建立了一个基于模块化设计思路的计算机辅助诊断系统借以对乳腺钼靶图像上的微钙化点进行检测和模式识别。 -In this paper, a modular design concept based on computer-aided diagnostic system to mammography for breast microcalcifications on the image to detect and pattern re
LVQ
- LVQ神经网络的分类——乳腺肿瘤诊断-LVQ neural network classification- breast cancer diagnosis
breastedge
- 乳腺图像轮廓提取,配准和分割的预处理工作-breast registration
SVR
- 本算法是利用matlab及libsvm软件包仿真了利用SVM建立基于乳腺组织电阻抗特性的乳腺癌诊断模型,并对诊断模型的特性进行评价-This algorithm is the use of simulation software package libsvm matlab and the establishment of the use of SVM based on electrical impedance properties of
hagness_IEEETAP_03
- 时域波束形成实现早期乳腺肿瘤检测,采用超宽带一阶高斯波-time beamforming for early breast cancer detection by UWB
X-segmentation
- 乳腺X光片的分割,它实现乳腺的分割,然后将分割的部分用于灰白质判断-galactophore segmentation
A_stationary_DBT_system
- 静态数字乳腺层析成像系统设计论文,国外高质量论文-stationary digital breast tomosynthesis system
pingjia
- 乳腺X线图像增强质量评价的MATLAB程序,这里使用对比度和DSM两种评价方法对乳腺X线图像增强方法的优劣做一个客观的评价。-Breast X-ray image enhancement the quality assessment of the MATLAB program, where the use of contrast and DSM two evaluation methods to make an objective as
LVQ神经网络的分类——乳腺肿瘤诊断
- LVQ神经网络的分类——乳腺肿瘤诊断,matlab(Classification of LVQ neural network -- diagnosis of breast tumor)