搜索资源列表
SpPCA
- 利用Sub-pattern PCA在Yale人脸库上进行人脸识别的matlab源代码,子模式主成分分析首先对原始图像分块,然后对相同位置的子图像分别建立子图像集,在每一个子图像集内使用PCA方法提取特征,建立子空间。对待识别图像,经相同分块后,分别将子图像向对应的子空间投影,提取特征。最后根据最近邻原则进行分类。
现代统计学与SAS应用
- 本书共分6篇,第1篇统计学基础知识与SAS软件应用技巧,介绍了统计学的基本概念和学习方法、试验设计入门、统计描述、SAS软件应用入门、编写SAS实用程序的技巧、单变量统计分析和利用SAS/GRAPH模块绘制常用统计图的方法。第2篇试验设计与定量资料的统计分析,介绍了与t检验、非参数检验和各种方差分析有关的试验设计和数据处理方法。第3篇试验设计与定性资料的统计分析,介绍了处理二维及高维列联表资料的各种统计分析 方法,包括卡方检验、Fish
现代统计学与SAS应用
- 本书共分6篇,第1篇统计学基础知识与SAS软件应用技巧,介绍了统计学的基本概念和学习方法、试验设计入门、统计描述、SAS软件应用入门、编写SAS实用程序的技巧、单变量统计分析和利用SAS/GRAPH模块绘制常用统计图的方法。第2篇试验设计与定量资料的统计分析,介绍了与t检验、非参数检验和各种方差分析有关的试验设计和数据处理方法。第3篇试验设计与定性资料的统计分析,介绍了处理二维及高维列联表资料的各种统计分析 方法,包括卡方检验、Fish
SpPCA
- 利用Sub-pattern PCA在Yale人脸库上进行人脸识别的matlab源代码,子模式主成分分析首先对原始图像分块,然后对相同位置的子图像分别建立子图像集,在每一个子图像集内使用PCA方法提取特征,建立子空间。对待识别图像,经相同分块后,分别将子图像向对应的子空间投影,提取特征。最后根据最近邻原则进行分类。-Sub-pattern PCA use in the Yale face database for face recogni
Subpattern-based_principal___component_analysis.zi
- 子模式主成分分析首先对原始图像分块,然后对相同位置的子图像分别建立子图像集,在每一个子图像集内使用PCA方法提取特征,建立子空间。对待识别图像,经相同分块后,分别将子图像向对应的子空间投影,提取特征。最后根据最近邻原则进行分类。-Sub-mode principal component analysis first of the original image block, and then the same sub-image, res
prtools
- 一个强大的统计模式识别工具箱,包含高斯分类器,高斯混合模型,主成分分析,支持向量机等常见分类方法。-A powerful statistical pattern recognition toolbox, including the Gaussian classifier, Gaussian mixture model, principal component analysis, support vector machines and o
methods_of_classification
- 这里和大家分享的几种基础的分类方法,其中包括判别聚类分析、人工神经网络、主成分分析等-Here and to share the basis of several classification methods, including discriminant cluster analysis, artificial neural networks, principal component analysis
20080111
- 有关图像的目标识别:"给出一种基于特征分类辨识的合成孔径雷达图像目标检测方法#用恒虚警和扩展分形方法对3&E图像进行目 标检测后用面积和峰值能量比算子辨识目标和背景杂波!去除一部分虚警!用小波域主成分分析对每个检测窗口内的图 像提取特征向量!用支持向量机对提取得到的特征向量进行分类!辨识目标和背景杂波!完成目标检测#使用&K?3数 据对该方法进行验证和分析!实验结果表明!经过特征分类辨识后!在检测率不变的情况下!虚警数目显著
Floatboos
- 基于、的特征提取方法, 研究、算法的多角度分类器设计问 题在对图像进行主成分分析和独立成分分析后, 针对多姿态角目标识别问题, 提出了角度优先粗分 类的设计方法, 并给出系统流程, 最后-Based, feature extraction methods, research, multi-angle algorithms classifier design problem in the image principal compo
svm_face_recognition
- 一篇很不错的关于人脸表情识别的论文。论文提出了一种基于人脸局部特征的表情识别方法,先选取人脸重要的局部特征,对得到的局部特征进行主成分分析,然后用支持向量机( SVM)设计局部特征分类器来确定测试表情图像中局部特征,同时设计支持向量机( SVM)表情分类器,确定表情图像的所属类别。-A very good facial expression recognition on paper. This paper proposes a feat
aaa
- 关于遥感图像分类方面的程序源代码 有主成分分析,神经网络等方法-Remote sensing image classification on the program source code is the principal component analysis, neural network, the
zuijinlinfenlei
- 我们使用MATLAB软件实现了人脸识别并统计其识别率。本实验采用PCA(主成分分析)方法,利用K-L变换和奇异值分解原理实现。并分别采用最近邻法分类器得出它们的成功率。-We use face recognition software and the MATLAB Statistics recognition rate. The present study, PCA (principal component analysis) meth
HOG
- 为了准确地对监控场景中的运动目标进行语义上的分类, 提出了一种基于聚类的核主成分分析梯度方向直方图和二叉决策树支持向量机的运动目标分类算法.利用背景减法提取运动目标前景区域, 并识别出潜在候选运动目标.利 用提出的基于聚类的核主成分分析的梯度直方图描述子提取候选运动目标的特征, 以较低维数的数据有效地描述运动目标的有效特征. 将提取的运动目标特征输入二叉决策树支持向量机, 实现多类目标的准确分类. 通过在不同视频序列上的实验验证,
kpca_toy
- 基于核主成分分析方法设计的分类器 分类器可用于对非线性数据分类非原创- Kernel PCA non linear class
KPCA_SVM
- 核主成分分析和支持向量机方法相结合,用于数据分类和预测。-Kernel principal component analysis and support vector machine method combined for data classification and prediction.
xinzhangxingtaixuexing2
- 背景:快速的将心脏按其特征进行聚类可为后续统计分析和研究带来很大的便利.系统聚类法是将样品或变量按照其性质上的亲疏相似程度进行分类的一种多元统计方法.目的:提出用主成分一聚类分析的方法来描述心脏形态学形状并进行分类,对中国健康成年人的心脏X射线测量的各项指标进行综合评价.方法:搜集了36例健康成年人的胸片,并用MxLiteView软件手动测量了每幅胸片中代表心脏形态学形状常用的10个指标,用Matlab软件对测量指标进行主成分分析,然后
PCA-matlab
- 利用主成分分析方法实现分类的Matlab源码分析-Principal component analysis Matlab source code analysis
vhxyrbta
- 包括主成分分析、因子分析、贝叶斯分析,RqPrmqk参数包含收发两个客户端的链路级通信程序,可以实现模式识别领域的数据的分类及回归,有较好的参考价值,Muxdnmu条件是路径规划的实用方法,滤波求和方式实现宽带波束形成。- Including principal component analysis, factor analysis, Bayesian analysis, RqPrmqk parameter Contains two
PCA
- 图像处理与识别实现分类算法功能的函数PCA(主成分分析)方法-PCA (principal component analysis) function of image processing and recognition to achieve classification algorithm
m03
- 主成分分析发实例,数据在mat文件中,运行前需要将其调入内存,主要用于光谱分析。(Example of principal component analysis)