搜索资源列表
Interpolation-algorithm
- 7种插值算法的c++代码实现,1 拉格朗日插值(POLINT) 2 有理函数插值(RATINT) 3 三次样条插值(SPLINE(二阶导数值)->SPLINT(函数值)) 4 有序表的检索法(LOCATE(二分法), HUNT(关联法)) 5 插值多项式(POLCOE(n2), POLCOF(n3)) 6 二元拉格朗日插值(POLIN2) 7 双三次样条插值(SPLIE2)-seven interpolation algorith
polyfit
- 曲线拟合程序 多项式相关系数的计算方法(多项式形式1) 多项式相关系数的计算方法(多项式形式2) 最小二乘法曲线拟合 三次样条插值(自然边界条件)-polynomial curve fitting procedures correlation coefficient is calculated (the form of a polynomial) polynomial coefficient of correlat
C3
- 插值 1.拉格朗日插值 2.有理函数插值 3.三次样条插值 4.有序表的检索法 5.插值多项式 6.二元拉格朗日插值 7.双三次样条插值-Interpolation 1. Lagrange interpolation 2. Rational function interpolation 3. Cubic spline interpolation 4. Orderly table retrieval metho
yangtiaochazhi
- 该程序能实现第一型三次样条插值,边界条件是端点的一阶导数。结果可以同时显示每段区间的插值多项式。-The program to achieve the first-type cubic spline interpolation, boundary conditions is the endpoint of the first order derivative. Results can be displayed at the same t
Rungehanshuchazhiwenti
- 比较三次样条插值和拉格朗日插值多项式对runge函数插值的效果并作图解释-Comparison of cubic spline interpolation and Lagrange interpolation polynomial interpolation of the Runge function and mapping to explain the effect of
cz
- 1.拉格朗日插值 2.有理函数插值 3.三次样条插值 4.有序表的检索法 5.插值多项式 6.二元拉格朗日插值 7.双三次样条插值-1. Lagrange interpolation 2. Rational function interpolation 3. Cubic spline interpolation 4. Orderly table retrieval method 5. Interpolating
main
- 分段线性插值,分段二次多项式插值,分段三次多项式插值,三次样条插值-Piecewise linear interpolation, sub-quadratic polynomial interpolation, sub-cubic polynomial interpolation, cubic spline interpolation
analysis2
- 数值分析B计算实习作业二:分别用分段线性插值、分段二次多项式插值、 分段三次多项式插值和三次样条插值对所给的数据进行细化 -Numerical Analysis of B calculated internship operation II: piecewise linear interpolation, respectively, sub-quadratic polynomial interpolation, sub-cubi
C2
- 拉格朗日插值,有理函数插值,三次样条插值,插值多项式-Lagrange interpolation, rational function interpolation, cubic spline interpolation, polynomial interpolation
chazhi
- Language 求已知数据点的拉格朗日插值多项式 Atken 求已知数据点的艾特肯插值多项式 Newton 求已知数据点的均差形式的牛顿插值多项式 Newtonforward 求已知数据点的前向牛顿差分插值多项式 Newtonback 求已知数据点的后向牛顿差分插值多项式 Gauss 求已知数据点的高斯插值多项式 Hermite 求已知数据点的埃尔米特插值多项式 SubHermite 求已知数据点的分段
shuzifenxi
- 北航数值分析大作业,对给定机翼的数据进行分段现行插值,分段现行二次多项式插值,分段三次多项式插值和三次样条插值,有完整的实验报告-Numerical analysis Beihang big job, given the current sub-wing of data interpolation, the current sub-quadratic polynomial interpolation, sub-cubic polynom
NumericalComputationMethod
- 某985/211大学研究生计算方法课程作业及源程序,包含常见的高斯法,克劳分解,雅克比赛得儿迭代,牛顿差值多项式,三次样条插值多项式,龙贝格积分法的源代码-Calculation of a 985/211 Graduate course work and the source, including common Gaussian law, Crow decomposition, Jacques games have children i
interpolation
- 插值 拉格朗日插值 有理函数插值 三次样条插值 有序表的检索法 插值多项式 二元拉格朗日插值 双三次样条插值-Rational function interpolation Lagrange interpolation cubic spline interpolation order polynomial interpolation table binary search method Lagrange i
4
- 插值的函数 函数名 功能 Language 求已知数据点的拉格朗日插值多项式 Atken 求已知数据点的艾特肯插值多项式 Newton 求已知数据点的均差形式的牛顿插值多项式 Newtonforward 求已知数据点的前向牛顿差分插值多项式 Newtonback 求已知数据点的后向牛顿差分插值多项式 Gauss 求已知数据点的高斯插值多项式 Hermite 求已知数据点的埃尔米特插值多项式 Sub
calc
- 插值多项式 和三次样条插值多项式等,可以较好的对其算法进行识别。(The interpolation polynomial and the three spline interpolation polynomial can identify the algorithm better.)
newTon
- 牛顿插值多项式源代码;三次样条插值多项式源代码;(Newton interpolation polynomial source code; three spline interpolation polynomial source code;)
插值runge现象
- 针对高次插值runge的学习代码,比较段数N不同时分段线性插值和三次样条插值,均给出误差曲线。(In view of the learning code of high order interpolation Runge, the number of comparison segments N does not simultaneously piecewise linear interpolation and three cubic s
m
- 计算newton插值多项式和三次样条插值多项式。(The Newton interpolation polynomials and the three spline interpolation polynomials are calculated.)
三次样条
- 三次样条插值算法实现,求其三次样 条插值多项式, I 型或 II 型边界条件,(Implementation of three spline interpolation algorithm)
样条插值
- 样条插值的研究背景,样条函数的力学意义,三次样条插值多项式的构造,一般的插值问题(Research background of spline interpolation, mechanical meaning of spline function, construction of cubic spline interpolation polynomials, general interpolation problems)