文件名称:KECA_Journal_Article
介绍说明--下载内容均来自于网络,请自行研究使用
Robert Jenssen 撰写论文原文(We introduce kernel entropy component analysis (kernel ECA) as a new method for data transformation and dimensionality reduction. Kernel ECA reveals structure relating to the Renyi entropy of the input space data set, estimated via a kernel matrix using Parzen windowing. This is achieved by projections onto a subset of entropy preserving kernel principal component analysis (kernel PCA) axes)
相关搜索: keca
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
Kernel Entropy Component Analysis_Robert Jenssen .pdf | 1287585 | 2019-01-03 |