文件名称:generative-models-master

  • 所属分类:
  • 人工智能/神经网络/遗传算法
  • 资源属性:
  • 上传时间:
  • 2018-01-19
  • 文件大小:
  • 77kb
  • 下载次数:
  • 1次
  • 提 供 者:
  • 麦***
  • 相关连接:
  • 下载说明:
  • 别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容均来自于网络,请自行研究使用

生成对抗网络中的各种衍生网络结构,包括基础GAN,C-GAN,AC-GAN等等
变分自动编码器各种衍生网络结构,包括条件变分自动编码器等等(Generated in the network against the derivative network structure, including GAN, C-GAN, AC-GAN and so on.

The variational autocoder derivative network structure, including conditional variational autocoder etc.)
相关搜索: GAN
VAE

(系统自动生成,下载前可以参看下载内容)

下载文件列表

文件名大小更新时间
generative-models-master 0 2017-04-26
generative-models-master\.gitignore 1208 2017-04-26
generative-models-master\GAN 0 2017-04-26
generative-models-master\GAN\ali_bigan 0 2017-04-26
generative-models-master\GAN\ali_bigan\ali_bigan_pytorch.py 2748 2017-04-26
generative-models-master\GAN\ali_bigan\ali_bigan_tensorflow.py 3308 2017-04-26
generative-models-master\GAN\auxiliary_classifier_gan 0 2017-04-26
generative-models-master\GAN\auxiliary_classifier_gan\ac_gan_pytorch.py 3659 2017-04-26
generative-models-master\GAN\auxiliary_classifier_gan\ac_gan_tensorflow.py 3900 2017-04-26
generative-models-master\GAN\boundary_equilibrium_gan 0 2017-04-26
generative-models-master\GAN\boundary_equilibrium_gan\began_pytorch.py 2602 2017-04-26
generative-models-master\GAN\boundary_equilibrium_gan\began_tensorflow.py 3134 2017-04-26
generative-models-master\GAN\boundary_seeking_gan 0 2017-04-26
generative-models-master\GAN\boundary_seeking_gan\bgan_pytorch.py 2366 2017-04-26
generative-models-master\GAN\boundary_seeking_gan\bgan_tensorflow.py 3093 2017-04-26
generative-models-master\GAN\conditional_gan 0 2017-04-26
generative-models-master\GAN\conditional_gan\cgan_pytorch.py 3816 2017-04-26
generative-models-master\GAN\conditional_gan\cgan_tensorflow.py 3786 2017-04-26
generative-models-master\GAN\coupled_gan 0 2017-04-26
generative-models-master\GAN\coupled_gan\cogan_pytorch.py 4595 2017-04-26
generative-models-master\GAN\coupled_gan\cogan_tensorflow.py 4974 2017-04-26
generative-models-master\GAN\disco_gan 0 2017-04-26
generative-models-master\GAN\disco_gan\discogan_pytorch.py 4471 2017-04-26
generative-models-master\GAN\disco_gan\discogan_tensorflow.py 5092 2017-04-26
generative-models-master\GAN\dual_gan 0 2017-04-26
generative-models-master\GAN\dual_gan\dualgan_pytorch.py 4671 2017-04-26
generative-models-master\GAN\dual_gan\dualgan_tensorflow.py 5231 2017-04-26
generative-models-master\GAN\ebgan 0 2017-04-26
generative-models-master\GAN\ebgan\ebgan_pytorch.py 2505 2017-04-26
generative-models-master\GAN\ebgan\ebgan_tensorflow.py 3012 2017-04-26
generative-models-master\GAN\f_gan 0 2017-04-26
generative-models-master\GAN\f_gan\f_gan_pytorch.py 3350 2017-04-26
generative-models-master\GAN\f_gan\f_gan_tensorflow.py 3798 2017-04-26
generative-models-master\GAN\generative_adversarial_parallelization 0 2017-04-26
generative-models-master\GAN\generative_adversarial_parallelization\gap_pytorch.py 3368 2017-04-26
generative-models-master\GAN\improved_wasserstein_gan 0 2017-04-26
generative-models-master\GAN\improved_wasserstein_gan\wgan_gp_tensorflow.py 3321 2017-04-26
generative-models-master\GAN\infogan 0 2017-04-26
generative-models-master\GAN\infogan\infogan_pytorch.py 4581 2017-04-26
generative-models-master\GAN\infogan\infogan_tensorflow.py 4093 2017-04-26
generative-models-master\GAN\least_squares_gan 0 2017-04-26
generative-models-master\GAN\least_squares_gan\lsgan_pytorch.py 2430 2017-04-26
generative-models-master\GAN\least_squares_gan\lsgan_tensorflow.py 3174 2017-04-26
generative-models-master\GAN\magan 0 2017-04-26
generative-models-master\GAN\magan\magan_pytorch.py 3513 2017-04-26
generative-models-master\GAN\magan\magan_tensorflow.py 4136 2017-04-26
generative-models-master\GAN\mode_regularized_gan 0 2017-04-26
generative-models-master\GAN\mode_regularized_gan\mode_reg_gan_pytorch.py 3606 2017-04-26
generative-models-master\GAN\mode_regularized_gan\mode_reg_gan_tensorflow.py 3871 2017-04-26
generative-models-master\GAN\softmax_gan 0 2017-04-26
generative-models-master\GAN\softmax_gan\softmax_gan_pytorch.py 2470 2017-04-26
generative-models-master\GAN\softmax_gan\softmax_gan_tensorflow.py 3123 2017-04-26
generative-models-master\GAN\vanilla_gan 0 2017-04-26
generative-models-master\GAN\vanilla_gan\gan_pytorch.py 3478 2017-04-26
generative-models-master\GAN\vanilla_gan\gan_tensorflow.py 3411 2017-04-26
generative-models-master\GAN\wasserstein_gan 0 2017-04-26
generative-models-master\GAN\wasserstein_gan\wgan_pytorch.py 2709 2017-04-26
generative-models-master\GAN\wasserstein_gan\wgan_tensorflow.py 3148 2017-04-26
generative-models-master\LICENSE 1210 2017-04-26
generative-models-master\README.md 2131 2017-04-26
generative-models-master\VAE 0 2017-04-26
generative-models-master\VAE\adversarial_autoencoder 0 2017-04-26
generative-models-master\VAE\adversarial_autoencoder\aae_pytorch.py 3035 2017-04-26
generative-models-master\VAE\adversarial_autoencoder\aae_tensorflow.py 3635 2017-04-26
generative-models-master\VAE\adversarial_vb 0 2017-04-26
generative-models-master\VAE\adversarial_vb\avb_pytorch.py 3131 2017-04-26
generative-models-master\VAE\adversarial_vb\avb_tensorflow.py 3859 2017-04-26
generative-models-master\VAE\conditional_vae 0 2017-04-26
generative-models-master\VAE\conditional_vae\cvae_pytorch.py 3655 2017-04-26
generative-models-master\VAE\conditional_vae\cvae_tensorflow.py 3693 2017-04-26
generative-models-master\VAE\denoising_vae 0 2017-04-26
generative-models-master\VAE\denoising_vae\dvae_pytorch.py 3279 2017-04-26
generative-models-master\VAE\denoising_vae\dvae_tensorflow.py 3290 2017-04-26
generative-models-master\VAE\vanilla_vae 0 2017-04-26
generative-models-master\VAE\vanilla_vae\vae_pytorch.py 3276 2017-04-26
generative-models-master\VAE\vanilla_vae\vae_tensorflow.py 3375 2017-04-26
generative-models-master\environment.yml 150 2017-04-26

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org