资源列表
[人工智能/神经网络/遗传算法] N-GEN-(11)
说明:The proposed approach is based on three stages which (1) use neural networks for constructing a response function model of a dynamic multiresponse system, (2) use exponential desirability functions for evaluating ove<heddam salim> 在 2024-11-16 上传 | 大小:272kb | 下载:0
[人工智能/神经网络/遗传算法] N-GEN-(10)
说明:The proposed approach is based on three stages which (1) use neural networks for constructing a response function model of a dynamic multiresponse system, (2) use exponential desirability functions for evaluating ove<heddam salim> 在 2024-11-16 上传 | 大小:239kb | 下载:0
[人工智能/神经网络/遗传算法] N-GEN-(9)
说明:The proposed approach is based on three stages which (1) use neural networks for constructing a response function model of a dynamic multiresponse system, (2) use exponential desirability functions for evaluating ove<heddam salim> 在 2024-11-16 上传 | 大小:353kb | 下载:0
[人工智能/神经网络/遗传算法] N-GEN-(8)
说明:The proposed approach is based on three stages which (1) use neural networks for constructing a response function model of a dynamic multiresponse system, (2) use exponential desirability functions for evaluating ove<heddam salim> 在 2024-11-16 上传 | 大小:336kb | 下载:0
[人工智能/神经网络/遗传算法] N-GEN-(7)
说明:The proposed approach is based on three stages which (1) use neural networks for constructing a response function model of a dynamic multiresponse system, (2) use exponential desirability functions for evaluating ove<heddam salim> 在 2024-11-16 上传 | 大小:341kb | 下载:0
[人工智能/神经网络/遗传算法] N-GEN-(6)
说明:The proposed approach is based on three stages which (1) use neural networks for constructing a response function model of a dynamic multiresponse system, (2) use exponential desirability functions for evaluating ove<heddam salim> 在 2024-11-16 上传 | 大小:208kb | 下载:0
[人工智能/神经网络/遗传算法] N-GEN-(5)
说明:The proposed approach is based on three stages which (1) use neural networks for constructing a response function model of a dynamic multiresponse system, (2) use exponential desirability functions for evaluating ove<heddam salim> 在 2024-11-16 上传 | 大小:289kb | 下载:0
[人工智能/神经网络/遗传算法] SA
说明:模拟退火算法 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化<and> 在 2024-11-16 上传 | 大小:5kb | 下载:0
[人工智能/神经网络/遗传算法] Hal-Tamrin-01-(1)
说明:exam solve AI help education learning<Akh> 在 2024-11-16 上传 | 大小:9kb | 下载:0
[人工智能/神经网络/遗传算法] Hal-Tamrin-01-(2)
说明:AI Exam Solve help education learning<Akh> 在 2024-11-16 上传 | 大小:10kb | 下载:0
[人工智能/神经网络/遗传算法] Hal-Tamrin-01
说明:AI Exam Solve help education learning<Akh> 在 2024-11-16 上传 | 大小:7kb | 下载:0
[人工智能/神经网络/遗传算法] Genetic-Algorithm_1
说明:AI Genetic Algoritm University Solve<Akh> 在 2024-11-16 上传 | 大小:85kb | 下载:0