文件名称:Domain decomposition for hyperbolic equations
介绍说明--下载内容均来自于网络,请自行研究使用
双曲方程的域分解,该模型显示了如何使用域分解技术求解迭代算法。
系数形式PDE u1(c4)求解u1
系数形式PDE u2(c)求解u2
系数表PDE v1(c2)将u1存储到v1
系数表PDE v2(c3)将u2存储到v2
然后计算并迭代如下:
1.计算初始化U
2.在“ LOOP”>“ Step1”>“变量值未解决”中:选择“解决方案”:“ Init U”,然后“计算”
3.在“ LOOP”>“ Step1”>“变量值未解决”中:选择“解决方案:LOOP”,然后根据需要进行多次计算以收敛(Domain decomposition for hyperbolic equations
This model shows how to solve an iterative algorithm using domain decomposition techniques.
Coefficient Form PDE u1 (c4) solves for u1
Coefficient Form PDE u2 (c) solves for u2
Coefficient Form PDE v1 (c2) stores u1 into v1
Coefficient Form PDE v2 (c3) stores u2 into v2
Then compute and iterate as follows:
1. Compute Init U
2. In LOOP > Step1 > Values of Variables not solved for : select Solution : Init U , then Compute
3. In LOOP > Step1 > Values of Variables not solved for : select Solution : LOOP, then Compute as many times as necessary to converge)
系数形式PDE u1(c4)求解u1
系数形式PDE u2(c)求解u2
系数表PDE v1(c2)将u1存储到v1
系数表PDE v2(c3)将u2存储到v2
然后计算并迭代如下:
1.计算初始化U
2.在“ LOOP”>“ Step1”>“变量值未解决”中:选择“解决方案”:“ Init U”,然后“计算”
3.在“ LOOP”>“ Step1”>“变量值未解决”中:选择“解决方案:LOOP”,然后根据需要进行多次计算以收敛(Domain decomposition for hyperbolic equations
This model shows how to solve an iterative algorithm using domain decomposition techniques.
Coefficient Form PDE u1 (c4) solves for u1
Coefficient Form PDE u2 (c) solves for u2
Coefficient Form PDE v1 (c2) stores u1 into v1
Coefficient Form PDE v2 (c3) stores u2 into v2
Then compute and iterate as follows:
1. Compute Init U
2. In LOOP > Step1 > Values of Variables not solved for : select Solution : Init U , then Compute
3. In LOOP > Step1 > Values of Variables not solved for : select Solution : LOOP, then Compute as many times as necessary to converge)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
mb3.mph | 177890 | 2018-10-11 |