文件名称:spam-classification--matlab
介绍说明--下载内容均来自于网络,请自行研究使用
机器学习中的垃圾邮件分类程序,用matlab做的。从以下链接下载垃圾邮件数据(spam data):(数据已下载,放在spambase.zip)
http://www-stat.stanford.edu/~tibs/ElemStatLearn/index.html
该数据包含57个邮件信息相关的变量,每条邮件可以被分类为垃圾邮件(Y=1)和非垃圾邮件(Y=0)。输出Y的值在文件中每一列的末尾。练习的目标是要预测电子邮件是否为垃圾邮件。
-Machine Learning spam classification procedures, using matlab to do. Data (spam data) from the following link to download the junk mail: (data has been downloaded, put spambase.zip) http://www-stat.stanford.edu/ ~ tibs/ElemStatLearn/index.html The data includes 57 e-mail messages related variables, each message can be classified as spam (Y = 1) and non-spam (Y = 0). Y value of the output end of each column in the file. The goal is to predict exercise email is spam.
http://www-stat.stanford.edu/~tibs/ElemStatLearn/index.html
该数据包含57个邮件信息相关的变量,每条邮件可以被分类为垃圾邮件(Y=1)和非垃圾邮件(Y=0)。输出Y的值在文件中每一列的末尾。练习的目标是要预测电子邮件是否为垃圾邮件。
-Machine Learning spam classification procedures, using matlab to do. Data (spam data) from the following link to download the junk mail: (data has been downloaded, put spambase.zip) http://www-stat.stanford.edu/ ~ tibs/ElemStatLearn/index.html The data includes 57 e-mail messages related variables, each message can be classified as spam (Y = 1) and non-spam (Y = 0). Y value of the output end of each column in the file. The goal is to predict exercise email is spam.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
spambase\LDA.asv
........\LDA.m
........\naiveBayes.m
........\naiveBayes_gaussian.m
........\QDA.asv
........\QDA.m
........\spambase.data
........\spambase.DOCUMENTATION
........\spambase.names
........\spamdetect.m
垃圾邮件分类报告.docx
spambase