文件名称:hanshuubijin
介绍说明--下载内容均来自于网络,请自行研究使用
用切比雪夫多项式逼近已知函数
用勒让德多项式逼近已知函数
用帕德形式的有理分式逼近已知函数
用列梅兹算法确定函数的最佳一致逼近多项式
求已知函数的最佳平方逼近多项式
用傅立叶级数逼近已知的连续周期函数
离散周期数据点的傅立叶逼近
用自适应分段线性法逼近已知函数
用自适应样条逼近(第一类)已知函数
离散试验数据点的多项式曲线拟合
离散试验数据点的线性最小二乘拟合
离散试验数据点的正交多项式最小二乘拟合
-By using Chebyshev polynomial approximation of the known functionApproximation of the known functions by Legendre polynomialsApproximation by rational fraction of known function in the form of PadmaTo determine the best uniform function polynomial approximation with the Lemez algorithmThe best known polynomial square for function approximationContinuous periodic function with Fourier series approximation of the knownApproximation of discrete data points in the Fu Liye cycleApproximation of the known function with adaptive piecewise linear methodAdaptive spline approximation ( first class ) known functionPolynomial curve fitting of discrete data pointsLinear least squares fitting of discrete data pointsOrthogonal polynomial least squares fitting of discrete data points
用勒让德多项式逼近已知函数
用帕德形式的有理分式逼近已知函数
用列梅兹算法确定函数的最佳一致逼近多项式
求已知函数的最佳平方逼近多项式
用傅立叶级数逼近已知的连续周期函数
离散周期数据点的傅立叶逼近
用自适应分段线性法逼近已知函数
用自适应样条逼近(第一类)已知函数
离散试验数据点的多项式曲线拟合
离散试验数据点的线性最小二乘拟合
离散试验数据点的正交多项式最小二乘拟合
-By using Chebyshev polynomial approximation of the known functionApproximation of the known functions by Legendre polynomialsApproximation by rational fraction of known function in the form of PadmaTo determine the best uniform function polynomial approximation with the Lemez algorithmThe best known polynomial square for function approximationContinuous periodic function with Fourier series approximation of the knownApproximation of discrete data points in the Fu Liye cycleApproximation of the known function with adaptive piecewise linear methodAdaptive spline approximation ( first class ) known functionPolynomial curve fitting of discrete data pointsLinear least squares fitting of discrete data pointsOrthogonal polynomial least squares fitting of discrete data points
(系统自动生成,下载前可以参看下载内容)
下载文件列表
函数逼近\Chebyshev.m
........\DFF.m
........\FZZ.m
........\Legendre.m
........\lmz.m
........\LZXEC.m
........\multifit.m
........\Pade.m
........\SmartBJ.m
........\SmartYTBJ.m
........\ZJPF.m
........\ZJZXEC.m
........\新建文件夹
函数逼近